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The first emergence of unprecedented global
water scarcity in the Anthropocene

Vecchia P. Ravinandrasana 1,2 & Christian L. E. Franzke 1,2

Access to water is crucial for all aspects of life. Anthropogenic global warming
is projected to disrupt the hydrological cycle, leading to water scarcity.
However, the timing and hotspot regions of unprecedented water scarcity are
unknown. Here, we estimate the Time of First Emergence (ToFE) of drought-
driven water scarcity events, referred to as “Day Zero Drought” (DZD), which
arises from hydrological compound extremes, including prolonged rainfall
deficits, reduced river flow, and increasing water consumption. Using a
probabilistic framework and a large ensemble of climate simulations, we
attribute the timing and likelihood of DZD events to human influence. Many
regions, including major reservoirs, may face high risk of DZD by the 2020s
and 2030s. Despite model and scenario uncertainties, consistent DZD hot-
spots emerge across the Mediterranean, southern Africa, and parts of North
America. Urban populations are particularly vulnerable at the 1.5 °C warming
level. The length of time between successive DZD events is shorter than the
duration of DZD, limiting recovery periods and exacerbating water scarcity
risks. Therefore, more proactive water strategies are urgently needed to avoid
severe societal impacts of DZD.

In late 2017 and early 2018, the city of Cape Town, South Africa, was
threatened by an unprecedented water scarcity crisis, known as “Day
ZeroDrought” (DZD), triggered by an exceptional 3-year rainfall deficit
that started in 20151. This event was characterized by the lowest river
flows recorded since 19042 in the Sonderend River and drained the
largest reservoir3, Theewaterskloof, to critical levels. The vulnerability
and scale of the population exposuremade it one of themost extreme
multi-year droughts on record, leading to severewater restrictions and
socio-economic consequences4,5. The long duration of the drought
and the high water demand made the situation dire, especially for a
city relying for 96% on surface water and only 4% on groundwater6.
Although Cape Town ultimately avoided reaching DZD, due to the
slightly above-average rainfall in winter 2018 and subsequent wetter
years, this event remains the major urban drought in recent history.
Similar crises occurred in cities like Chennai in 20197, while other cities
like Los Angeles8 remain highly vulnerable. These cases highlight the
growing global concern over urban water security and serve as a wake-
up call to the risks of water insecurity.

Traditional droughts, meteorological, agricultural, and hydro-
logical, are typically assessed in isolation based on deficits in pre-
cipitation, soil moisture, or streamflow. In contrast, water scarcity is a
multidimensional event arising from insufficient quantity, compro-
mised quality, and unmet environmental flow requirements, con-
straining the sustainable availability of water sources for human and
ecological systems9. This study focuses on socio-physical water scar-
city, driven by anthropogenic supply-demand imbalances. However,
DZD represents an acute water scarcity triggered by the simultaneous
occurrence of multi-year precipitation deficits, river flow depletion,
and high-water demand, leading to a critical depletion of reservoirs.
Therefore, DZD is a multi-year compound extreme event arising from
the concurrent occurrence of several interdependent events10. A
compound extreme event refers to a simultaneous occurrence of
multiple extreme events that can have drastic effects on a large scale,
far greater than the impact of an individual event11,12. Multi-year
meteorological drought, driven by insufficient precipitation and
potentially exacerbated by global warming, can lead to hydrological
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droughts characterized by abnormally low river flows, reducing water
availability. Such combined events considerably increase the risk of
water scarcity when the available supply is less than the demand.
Hence, the simultaneous occurrence of several climate extremes can
lead to more severe impacts13 on water supply14 and subsequently on
society and ecosystems15, highlighting the need for integrated drought
assessment frameworks that account for compound events.

Intensive water consumption due to economic development,
population growth, and modern agriculture, heightens the risk that
water resources, depleted by drought, will not be able tomeet sectoral
water demands. On a global level, future climate projections indicate
that global warming is expected to disrupt and intensify the water
cycle variability16, leading tomore severe wet-dry fluctuation periods17,
enhancing evapotranspiration18, and reducing precipitation and sur-
face runoff16 in many regions. These changes are expected to increase
the likelihood of both climatological and hydrological water stress19–22.
Despite the distinct nature of drought and water scarcity, their rela-
tionship is crucial in the hydrological system23. Climate change and
socioeconomic development drive global freshwater scarcity24–26,
affecting numerous populations27. However, the risk of future global
water scarcity, caused by anthropogenic climate change and rising
water demand across all sectors, and its impacts28,29 remain poorly
understood due to the complexity of its socio-economic and physical
interactions.

Few studies have focused on understanding the DZD drivers, and
thenmainly for Cape Town, South Africa1,2,4,30–33. The event was caused
by a wet-season rainfall deficit and long-term decline in the frequency
and intensity of rainy days, making the rainy season shorter than the
dry season34,35. Anthropogenic climate change contributed to DZD36,37

and is expected to increase its future likelihood33. However, global-
scale assessments of the emergence and attribution of DZD-like events
under global warming remain limited. Understanding where and when
such compound events will emerge is crucial for local and global water
security strategies.

To the best of our knowledge, few studies have assessed the
Time of First Emergence (ToFE) of extreme events such as unpre-
cedented hydrological drought38 and water scarcity39, under
human-induced climate change. For instance, Liu et al.39 estimated
the ToFE of water scarcity and its potential disappearance based on
a per-capita water availability metric. However, the understanding
of ToFE of water scarcity driven by the compound effects of
hydrological drought and socio-economic growth remains limited.
Here, water scarcity arises when freshwater demand exceeds the
available supply, including reservoir storage, under compound
drought conditions. Reservoirs are essential for managing local
water availability and assessing the severity of water scarcity under
climate change40. However, reservoir feedback41,42 due to reservoir
dependence can increase vulnerability to water shortages during
prolonged drought, as increased storage capacity encourages
greater water consumption. Reservoirs help mitigate hydrological
extremes, but over-reliance can mask water stress and delay adap-
tation strategies. Therefore, there is an urgent need for in-depth
research on reservoir-related water security risks to achieve water-
related sustainable development goals.

This study assesses the characteristics of global physical water
scarcity caused by hydrological drought in anthropogenic climate
change using a probabilistic framework based on large-ensemble
model simulations. Our study specifically addresses water scarcity that
arises when prolonged drought reduces water supply below demand.
To investigate the emergence of extreme drought-driven water scar-
city, we use 100 ensemble members of climate projections with the
Community Earth SystemModel version 2 Large Ensemble (CESM2-LE)
under the SSP3-7.0 scenario for probabilistic analysis. We also include
the Centre National de Recherches Météorologiques (CNRM) model
under SSP3-7.0 and SSP2-4.5 scenarios for the sensitivity of our results,

using 10 ensemble members for each scenario to ensure consistency.
TheCNRM-based analysis is solely for the sensitivity of the ToFE due to
its coarser spatial resolution relative to CESM2-LE. We evaluate the
global ToFE of prolonged drought-driven water scarcity, such as DZD,
using amethod based on the Fraction of Attributable Risk (FAR) of the
joint probability of compound extremes, incorporating reservoir and
lake levels. We apply the FAR to quantify the increase in the likelihood
of DZD events due to human-induced climate change, attributing the
risk to the anthropogenic forcing. Our study focuses on DZD as an
acute water scarcity event due to a long period of unprecedented
compound extreme events in water supply shortage and rising
demand under a warming climate. We identify when and where
anthropogenic DZD first emerges, how long these events will last, and
how many people will be exposed to DZD.

Results
Emergence of multi-year drought due to anthropogenic global
warming
We investigate drought-driven water scarcity as a compound extreme
event characterized by the concurrent exceedance of thresholds of
four indicators: the 48-month Standardized Precipitation Evapo-
transpiration Index (SPEI48), the Standardized River Flow Index
(SRFI48), and the Standardized Water Scarcity Index (SWSI48), as
illustrated in Fig. 1, and Time for Reservoirs to Dry (TRD, Supplemen-
tary Fig. 6). Although SPEI is widely used for capturing atmospheric
water demand through Potential Evapotranspiration (PET), it does not
reflect actual water losses from the land surface, which actual evapo-
transpiration better represents. Nonetheless, PET-based indices
remain suitable for detecting climate-driven drought in long-term,
large-scale studies due to their broader data availability and
methodology.

Our results quantify the spatial distributions of water stress and
suggest that some regions will encounter unprecedented regional
drought conditions due to global warming under the SSP3-7.0 scenario
(Fig. 1). Regarding the SPEI48 and SRFI48 indices, most regions are
expected to experience unprecedented severemulti-year hydrological
droughts, especially towards the end of the twenty-first century under
anthropogenic climate change. SWSI48 shows the emergence of
regional water scarcity in future periods.

Towards the end of the twenty-first century, almost all regions are
at high risk of severe and pronounced persistent drought (i.e., SPEI48,
Fig. 1c) in the far future. Our findings align with a previous study43

indicating a persistent increase in severe multi-year drought in the
future over southern Africa, northern South America, the Mediterra-
nean Region, Australia, and Chile. Conversely, regions like Argentina,
East Africa, and high-latitudeRussia areprojected to experiencewetter
climates.

Similarly, the spatial distribution of SRFI48 (Fig. 1e, f) indicates an
increase and intensification of severemulti-year river flow extremes in
the future44. This is projected to intensify in the far future45,46. A sub-
stantial decline in the Yangtze River water level is projected in the near
future, followed by a slight increase in the far future. The increase in
streamflow in the far future is driven by increased snowmelt47,48 and
precipitation49, which could lead to water level rises. Notably,
anthropogenic climate change is projected to also alter the world’s
largest river flow systems, such as the Amazon River. However, an
increase of a high risk of the occurrence of extreme floods50 is pro-
jected in the far future for the biggest rivers, such as the Rio de la Plata,
Nile, Congo, and Yellow Rivers.

The SWSI48 addresses the multi-year impact of increasing water
demand with a decrease in water supply in a warming world. Our
results show the emergence of acute water scarcity in the future
(Fig. 1h, i), with total water demand exceeding total water supply. The
expansion of regions impacted by water scarcity shows the intensifi-
cation of SWSI48, particularly in the western United States of America,
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Mediterranean regions, northern Africa, southern Africa, India,
northern China, and southern Australia.

Consequently, our results state that several regions will at the
same time encounter severe dryness, as indicated by SPEI48 less than
−1.5, persistent reduction in river discharge, by SRFI48 less than −1.5,
and chronic acute water scarcity, defined by SWSI48 less than 0.6.
Therefore, these simultaneous occurrences of multiple water-related
stress factors driven by long-duration rainfall deficits, increased eva-
potranspiration, depleted riverflow, and increasedwater consumption
are projected to intensify jointly under a warming climate scenario,
CESM2-LE SSP3.7-0. This compound pattern of multi-year water stress
underscores an increasing prevalence of extreme water stress26,38,45,51

and scarcity52 in the future, especially in already drought-prone
regions.

Time of First Emergence (ToFE) of DZD
This study defines ToFE as the first decade in which the Fraction of
Attributable Risk (FAR) for DZD exceeds 0.99, indicating a 99% like-
lihood that human activities caused the onset of these unprecedented
compound drought-scarcity events. ToFE is assessed relative to pre-
industrial conditions (1850–1899), which serve as the baseline for

detecting anthropogenic emergence. The focal hotspot regions
affected by unprecedented DZD, with their respective decade of ToFE
and the distribution of the ToFE, are shown in Fig. 2. Our results
indicate that anthropogenic climate change is projected to trigger the
onset and occurrence of DZD, primarily due to severe and persistent
compound multi-year hydrological droughts, reservoir depletion, and
high-water demand.

About 14% of the global reservoirs from the Global Reservoir
and Dams (GRand) database (Supplementary Fig. 5, seeMethods for
more information regarding the reservoirs) would dry out due to a
high risk of DZD during their respective ToFE, as shown in Fig. 2a.
The 74% of regions covered by DZD are projected to experience an
unprecedented water scarcity by 2100, under the SSP3-7.0 scenario
of CESM2-LE. Moreover, almost 35% of those regions are facing the
emergence of water scarcity, including their reservoirs, between
2020 and 2030 (Fig. 2b). This will threaten the local freshwater
availability in DZD-prone regions (Supplementary Fig. 7). Declining
precipitation and river flows, combined with rising water
demand, can dry up the reservoirs and cause water scarcity across
sectors, heightening the risks of water, food, or socio-economic
insecurity.

Fig. 1 | Ensemble mean of drought-related and water scarcity indices at a 48-
month timescale across three time periods based on CESM2-LE simulations.
The first column panel shows the ensemble mean of water stress for the pre-
industrial period (1850–1899), which is considered as the baseline period, the
second column panel for the near future (2020–2050), and the third column panel
for the far future (2070–2100). a–c Present the Standardized Precipitation-
Evapotranspiration Index (SPEI48), indicating long-term climatic water balance at a
48-month timescale. d–f Show the Standardized River Flow Index (SRFI48), cap-
turing hydrological drought conditions at a 48-month timescale. g–i Depict the

Standardized Water Scarcity Index (SWSI48), reflecting the ratio of total water
supply to total water consumption at a 48-month timescale. Each panel represents
the ensemblemean, illustrating the spatial pattern and severity of compoundwater
stress indicators over time. Negative values of SPEI48 and SRFI48 indicate
increasingly dry conditions, while lower SWSI48 values (i.e., supply-to-demand
ratios below normal) signal intensifying water scarcity driven by growing demand.
Together, these projections reveal areas at high risk of compound, long-termwater
stress under future climate and socio-economic scenarios.
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The ToFE of DZD is influenced by the severity of the precipitation
deficit and increases in evapotranspiration (SPEI48), river drought
(SRFI48), and water demand (SWSI48), particularly in Africa (Supple-
mentary Fig. 10). In parts of Asia and America, increased water con-
sumption can influence the early emergence of DZD compared to
other factors. This rise in water consumption is associated with
population growth and socio-economic development, encompassing
expanded water use across domestic, irrigation, industry, electricity,
livestock, and mining sectors. These findings emphasize the impor-
tance of jointly considering all four drivers: climate, hydrological
supply, event duration, and human demand, since no single factor can
fully characterize a compound hydrological extreme event like DZD.
Furthermore, the lower the thresholds applied to define the DZD,
reflecting more severe and rare events, the later the ToFE will emerge,
underscoring the complex relationship between event severity and its
anthropogenic emergence (Supplementary Fig. 10). This compound
approach highlights that water scarcity can be triggered by various
drivers rather than a single stressor. For instance, a precipitationdeficit
without strong demand pressure may not induce water scarcity, while
excessive demand alone may not trigger a water crisis if demand
remains below supply. However, unsustainable consumption driven by
population growth and socio-economic development alone can also
trigger water scarcity if water use surpasses the available resource.
Therefore, the simultaneous occurrence of these factors can lead to
the emergence of an unprecedented acute water scarcity.

In addition, reservoir characteristics, specifically the Time for
Reservoir toDry (TRD), play a crucial role in detecting theToFEofDZD.
TRD serves as a proxy for how long a reservoir can sustainwater supply
under drought conditionswhen river inflow is the only source ofwater.
The longer it takes for an unprecedented drought to drain water in
reservoirs, the later the ToFE will occur, particularly in Mediterranean
regions. An increase in TRD, quadrupling the TRD, will affect the ToFE
of the 8% of the DZD-prone regions, causing later emergence than in
Fig. 2a (Supplementary Fig. 11, Methods). Therefore, the duration of
drier conditions, combinedwith rising humanwater consumption, can
dry the reservoirs and trigger severe DZD, including reservoir-
dependent regions. However, excluding both drought duration and
TRD increases the event occurrence in both historical and future
periods and raises their probability. This will delay the human-induced
signal (FAR ≥ 0.99), leading to later ToFE compared to Fig. 2, parti-
cularly in the Mediterranean regions (Supplementary Fig. 12). In

contrast, DZD emerges earlier in other regions because the probability
of future events exceeds the pre-industrial baseline earlier, enabling
earlier detection of FAR ≥0.99. Therefore, including the multi-year
drought duration and TRD makes these events unprecedented versus
pre-industrial conditions, highlighting their importance for under-
standing the emergence and magnitude of anthropogenic water
scarcity and the critical role of reservoirs in water crisis vulnerability.
These insights underline the need for future work research integrating
dynamic reservoir operations and adaptive water management stra-
tegies where region-specific data is available.

Furthermore, the ToFE of unprecedented water stress and scar-
city can be dependent on model structure and scenario pathways38,39.
To address this, we use data from the CNRM model under two sce-
narios, SSP2-4.5 and SSP3-7.0. Both scenarios project that 51% of DZD-
affected regions will face unprecedented water scarcity by 2100, with
22% experiencing emergence as early as 2020-2030 (Supplementary
Fig. 21b, c). The influence of the scenario on DZD ToFE is region-
specific (Supplementary Fig. 21b, c, f) due to the interaction between
regional climate drivers and human water use. Both high (SSP3-7.0)
and moderate (SSP2-4.5) scenarios can advance, delay, or have no
change on DZD emergence, depending on the region. Model structure
also drives spatial discrepancies (Supplementary Fig. 21a, b, d, e):
CESM2-LE projects broader DZD regions in northern Africa,
while CNRM highlights other regions such as South America and
Australia. Nonetheless, both models consistently identify the Medi-
terranean, parts of southern Africa, and North America as key emer-
ging hotspots.

Waiting time and duration of DZD
The recurrence and persistence of compound drought events are cri-
tical to understanding future water risk. In this context, we assess the
waiting time directly by counting the number of months after the
decade of the ToFE until the next event, for all consecutive DZD events
until 2100, while the duration is calculated as the number of months a
DZD event lasts. Both factors can importantly exacerbate the societal
and ecological impact of DZD because its continuity is destructive and
costly, especially when the waiting time is short and the duration is
long. The duration plays a crucial role in determining the event’s
extremeness and affects the exposure and vulnerability of society.
Short waiting times between successive events limit the recovery
period, thereby amplifying stress on water systems.

Fig. 2 | Time of First Emergence (ToFE) of Day Zero Drought (DZD) event and
global hotspot regions based on CESM2-LE ensemble simulations under the
SSP3-7.0 scenario. a Spatial distribution of the decadal ToFE of DZD events across
the globe from 1900 to 2100. Colored shading indicates the first decade during
which DZD becomes statistically attributable to anthropogenic climate change,
defined as the first decade in which the Fraction of Attributable Risk is greater than
0.99 (FAR≥0.99). Gray regions indicate grid cells where no DZD event attributable
to anthropogenic climate change is projected to emerge before 2100. For regions
with reservoirs, the ToFE is considered to be the first decade after the year of

completion (Supplementary Fig. 6) of their respective reservoirs, when all DZD
criteria are simultaneously met. By aligning the emergence timing with the
operational onset of water storage infrastructure to reflect the real-world system
resilience dynamics. The black stars denote the locations of the reservoirs threa-
tened by DZD emergence. b Circular diagram illustrating the temporal distribution
of ToFE by decades. The color scale indicates the percentages of grid cells (land
areas) experiencing their ToFE distribution in each decade from 1900 to 2100. It
provides a temporal overview of how the ToFE is distributed over time and the
trends in DZD emergence.
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The spatial distribution and the Probability Density Functions
(PDFs) of DZD duration andwaiting time across hotspot regions reveal
distinct regional variations in the magnitudes and the distribution
(Fig. 3). The heavy-tailed PDFs, with the 99th percentile exceeding
48 months, suggest that climate change can cause long durations of

DZD events, although such extremes remain rare events due to long
waiting times between events. However, short waiting times and
durations of less than 48months aremore likely to occur, as illustrated
by the shape of their PDFs and their spatial distribution (Fig. 3a, b).
Moreover, the probability of having a waiting time above 48 months

Fig. 3 | Characteristics of Day Zero Drought (DZD) events in terms of waiting
time and duration, based on CESM2-LE simulations under the SSP3-7.0 sce-
nario. The central spatialmap shows the spatial distribution of the ensemble-mean
waiting time (a) and duration (b) of DZD events, respectively, following the Time of
First Emergence (ToFE) at each grid point of DZD-prone regions across the globe.
c represents the spatial distribution of the frequency (%) of extreme DZD events,
defined as those where the event duration exceeds the waiting time, indicating
prolonged water scarcity impact and short recovery period. The accompanying
inset circular diagramof c illustrates the distribution of these events, with the color
scale indicating the proportion (percentages) of grid cells experiencing such

conditions. This visualization highlights where and how frequently extreme DZD
conditions with long duration and short waiting time emerge. The surrounding
paired panels depict the Probability Density Function (PDF) of waiting time and
duration for DZD events across seven DZD-prone regions. Colored lines represent
the PDF of each ensemble of 100 CESM2-LE, while the black line is the ensemble
mean of the respective PDF. The vertical dashed lines mark the ensemble mean
(black), 90th percentile (blue), and 99th percentile (green) for each region. The red
dashed line represents themonthly scale of the compound extreme event, which is
48months. The period considered for each grid point started from themonth after
each decade of their respective ToFE and continued until 2100.
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for all regions affected byDZD is above the 90th percentile. In terms of
duration, the likelihood of an event lasting less than 48 months is
above the 90th percentile, except for the Mediterranean Region,
Southern Africa, Asia, and Australia, indicating shorter tails of waiting
times and longer tails of duration. Thus, in these regions, the DZD
tends to last longer with shorter waiting time periods. These pro-
longed DZD can dry up the reservoirs, heightening the risk of long-
term acute water scarcity with a large-scale impact during the twenty-
first century. This will be exacerbated by climate change in the future,
cascading to “zero water” as many reservoirs will not have enough
water to meet the demand of the projected population. Altered pre-
cipitation and river flow patterns can prolong the dry conditions and
reduce the volume of inflows to freshwater systems, exacerbating
water shortages. Increased evapotranspiration andwater consumption
deplete water sources (water available in rivers, lakes, and reservoirs)
more quickly and prolong DZD duration. The volume of water that
reservoirs can retain will decrease due to prolonged periods of stress
caused by both climate change and human activities. As ecosystems
areweakened and less capable of retainingwater, even brief periods of
rainfall may be insufficient to end a drought or replenish water sup-
plies, limiting the recovery period before the next DZD event.

Thedurationdistributions vary considerably in the tails compared
to the waiting time, determining the likelihood of extremeDZD events
with longer durations. The model agreement is high in simulating the
waiting time and duration of the DZD. The 90th and 99th percentiles,
the extremeupper tails, show someconsistencyamong the ensembles,
indicating that DZDs are projected to have a long-lasting duration but
can also have long waiting times between events. An upper tail of the
waiting time density greater than the duration denotes the possibility
of rare DZD to occur in America and Northern Africa.

The localized nature of DZD characteristic is driven by the varia-
tion of climate (via SPEI48 and SRFI48), water consumption (via
SWSI48), and reservoir capacity (via TRD) across regions, as the cli-
mate, the capacity of the reservoirs, agricultural irrigation, industrial
development, and population-driven demand differ substantially
across regions. To identify where DZD events will be most severe,
Fig. 3c shows the DZD-prone regions and their frequency, defined as a
case where DZD event duration exceeds its waiting time, indicating
short recovery periods and prolonged impact. Almost 47% of the
global high-risk regions will experience extreme DZD events with a
frequency between 20% and 30%. Around 12% of the DZD-prone
regions have a frequency of extreme prolonged DZD events above
50%, indicating that almost half of the events have longer durations
than waiting times, suggesting frequent and severe water crisis con-
ditions with substantial socio-economic impacts. Regions with high
water demand and strained reservoirs, such as the Mediterranean,
exhibit both high frequency and long durations of extreme DZD. In
these areas, the compounded effects of hydro-climatic stress and
human demands intensify the severity and persistence of DZD,
exposing heightened vulnerability to water crises and limiting recov-
ery capacity.

These findings underscore that the duration and waiting time of
DZD are shaped by complex, location-specific socio-hydrological
feedback. Moreover, the DZD characteristics are crucial for identifying
vulnerable zones where adaptive water governance is urgently needed
to mitigate future water crises. Understanding these localized
dynamics enables more targeted drought preparedness and infra-
structure resilience planning.

Impact of DZD on the population
We quantify the number of people living in each grid cell during the
decade in which DZD first emerges (ToFE). We assess the population
exposure across the total, rural, and urban populations. Results reveal
a disproportionate exposure of vulnerable populations across time,
regions, and warming levels (Fig. 4). Under the SSP3-7.0 scenario, over

753 million of the total population (Fig. 4a, almost 9% of the current
global population) will be exposed to DZD, with populations in urban
areas (467million) more affected than in rural areas (286million). The
urban population is most exposed in the Mediterranean, with 196
million urban and 85 million rural residents at risk. In contrast, rural
populations are disproportionately impacted in Northern Africa,
Southern Africa, and Asia (Fig. 4d).

In rural areas reliant on rainfed agriculture and surfacewater, DZD
will threaten livelihoods, food security through crop failures, and
economic stability. Although urban areas generally benefit frommore
robust infrastructure, they remain highly vulnerable to DZD over the
next few decades (Fig. 4c). As cities expand, rising water demand often
exceeds supply, making the area susceptible to energy shortages,
restricted domestic water consumption, and socio-economic
instability.

DZD in terms of global warming levels
The Paris climate goals are expressed in terms of global warming levels
(GWL), making it essential to assess the societal impact of DZD related
to thewarming level at the ToFEof DZD relative to the baseline period.
By linking the ToFE of DZD-affected regions to their respective GWLs,
we estimate the distribution of exposed populations. The results show
that 61% of GWL related to the ToFE of DZD-affected regions are in the
range of 1–2.5 °C (Fig. 4b). This indicates that over half of these regions
will experience DZD in a 1–2.5 °C warmer world. Notably, more urban
population would be exposed to DZD than rural population (Fig. 4e).
The future impact on urban DZD-prone regions will be severe under
these warming levels due to the higher population densities and
escalating demand. Hitting themark of 1.5 °C represents themaximum
of the exposed population (Fig. 4e), with a total population of 488
million, which can be decomposed into 322 million of urban and 166
million of rural population, suggesting the urgent need to limit
warming at most 1.5 °C. This study emphasizes how climate change,
socio-economic development, and water scarcity interact to increase
the DZD risks, particularly affecting vulnerable populations unequally,
even before the most extreme warming scenarios are reached.

In addition, the risks of urban DZD are not just a future concern in
a warming world, but also a near-term reality, with high population
exposureby 2020 (Fig. 4c). These compounded challenges underscore
the urgent need for proactive and targeted policy responses, particu-
larly in regions where rapid development, insufficient water infra-
structure, and climate vulnerability coexist.

Adaptation pathways and policy implications
The emergence of DZD highlights the urgent need for proactive,
integratedwatermanagementwithinpolicy frameworks to address the
compound risks of climate change and unsustainable water use. Cli-
mate policy and water security are tightly interconnected in the Sus-
tainable Development Goals (SDGs)53,54, so mitigation and adaptation
strategies must align with global targets while fitting regional and
community-specific needs for long-term resilience55.

Defining DZD events as water scarcity driven by climate change
underscores the challenges in sustainable water supply (SDG target
6.1) and efficient water use under stress (SDG target 6.4). Assessing the
ToFE of DZD supports early warning signals (SDG target 13.1) and
integration of climate adaptation strategies into water management
policies (SDG target 13.2). Empowering communities to design local
adaptation strategies fosters equitable and context-appropriate
responses56, through water conservation, crop selection, water sto-
rage solutions, and efficient cross-sectors water use, context-specific
responses in DZD-prone regions.

Building resilience requires integrating local knowledge, adaptive
cooperativemanagement57, water governance58, and diversified supply
strategies, including the re-planning of water reservoirs, desalination,
rainwater harvesting, and wastewater recycling. Climate-resilient
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infrastructure investments, which have been underfinanced59, need to
balance conventional and innovative approaches to ensure sustainable
water access in drought-prone regions.

Uncertainty in ToFE of DZD
A key limitation of this study is the reliance on the CESM2-LE and a
limited number of CNRM simulations for the sensitivity analysis.
CESM2-LE provides robust ensemble consistency, suitable for prob-
abilistic analysis, but lacks scenario diversity and structural uncer-
tainties across Earth System Models (ESMs). Conversely, the CNRM
model includes more scenarios but has fewer ensemble members and
lower spatial resolution, limiting its ability to capture localized
extremes. These limitations underrepresent inter-model variability in
drought drivers, including precipitation and evapotranspiration,
whose trends may vary among ESMs60,61, limiting our uncertainty
assessment.

Moreover, CESM2-LE’s landmodel assumes static aquifer storage,
excluding dynamic groundwater variability. This overlooks the critical
role of groundwater as a vital buffer during drought, particularly in
groundwater-dependent regions. Groundwater contributes to the
global water cycle, influencing river discharge and evapotranspiration,
while alsobeing altered byboth climate change and humanactivities62.
Incorporating dynamic groundwater processes is essential to improve
water stress risks assessments. Groundwater is declining globally,
leading to dry wells63. Climate change stresses groundwater62 through
increased use during droughts and reduced natural recharge, poten-
tially worsening the impacts of continueddrought64. Prolonged rainfall

deficits can disrupt the hydrological cycle in a warmer world and can
lead to groundwater drought65. Despite its important role in water
scarcity, global modeled and observed groundwater datasets remain
scarce. However, its long-term relationship with atmospheric drought
(partially captured by SPEI48; Supplementary Fig. 13) provides insight
into its response to hydroclimatic stress.

Notwithstanding anthropogenic global warming, population
growth and economics remain the major drivers of the water crisis by
increasing demand27,34. Our study considers the socio-physical aspects
of water security and excludes factors like national water policies,
governance, quality, and environmental flow requirements.

The GRanD database provides valuable reservoir data but lacks
information on real-time-varying hydrological dynamic details and
includes unverified entries, limiting the number of reservoirs used.
Although our study assumes stationary TRD, the static TRD effectively
defines the minimum drought duration required to deplete reservoirs
below critical storage levels, but it limits the ability to capture the
future dynamic reservoir operations during drought. In the era of
ongoing dam construction, time-varying TRD is essential for under-
standing how reservoir strategies influence water scarcity, but such
data are currently unavailable. The interaction between socio-physical
drivers and reservoir management is essential for defining compound
climate extreme events23,66 and assessing DZD impact. Despite data
limitations, our approach provides a practical and reproducible fra-
mework for vulnerability assessment.

The reconstruction of historical total water consumption data
(1850–2009) assumes smooth socio-economic transitions over time

Fig. 4 | Population exposure and global warming levels associated with the
Time of First Emergence (ToFE) ofDay ZeroDrought (DZD) basedonCESM2-LE
ensemble simulations under the SSP3-7.0 scenario. a Spatial distribution of the
total population exposure at the ToFEof DZDacross the globalDZD-prone regions.
The color scale indicates the total population (urban and rural) exposed when DZD
first emerges in each grid cell. b Global distribution of the Global Warming Level
(GWL, in °C above preindustrial) corresponding to the ToFE of DZD, providing
insight into the warming levels associated with the onset of DZD events. c Circular

diagram illustrating the rural, urban, and total population exposure to DZD at the
ToFE, spanning the period from 1900 to 2100. d Regional distribution of rural,
urban, and total populations affected by DZD, computed as the sum of exposed
respective rural, urban, and total population within each regional hotspot
(demarcated black box in a) at their respective ToFE. e Distribution of population
exposure relative to the GWL at ToFE. Radar plots c–e emphasize the relative
contributions of rural and urban populations to total exposure, highlighting dis-
parities in vulnerability and exposure across both time and regions.
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and overlooks historical disruptions like wars, technological innova-
tions, or abrupt policy changes. Moreover, the reliance on a scenario
means that reconstructed trends reflect a world characterized by high
socio-economic fragmentation and challenges to sustainable devel-
opment, which may not fully align with actual historical pathways.
These assumptions affect the accuracy of past water use estimates.
Addressing these data gaps will help refine water scarcity risk analysis
in the context of climate and socio-economic change.

Discussion
This study reveals when and where DZD may first emerge under cli-
mate change, emphasizing the importance of the compound drought
duration and reservoirs40 in driving the severity of long-term drought-
driven water scarcity and the unprecedented nature of these events.
Excluding these factors delays ToFE, particularly in reservoir-
dependent regions (Supplementary Fig. 12). Integrating reservoir
response and drought persistence dynamics into future models will
improve the relevance and robustness of water scarcity for near- and
long-term assessments while considering risk and mitigation benefits.
Our findings align closely with Stolte et al.67, highlighting the increase
in the likelihood of urban drought in the future, a potential driver of
urban DZD. In addition, it is important to consider the impact of
upstream landuse change, as it can intensify the effects of drought and
exacerbate water scarcity in downstream areas26.

Unlike broader water scarcity metrics like the Falkenmark indi-
cator, used by Liu et al.39, which use per capita water availability and
relative population demand, our approach incorporates sector-
specific water use and regional imbalance between supply and sec-
toral consumption (via SWSI) under human-induced climate. Note that
SWSI on its own can identify water scarcity driven by high water con-
sumption, but that can occur without climate-caused drought condi-
tions. This distinction is important in the context of our study, as we
define DZD as a prolonged anthropogenic drought-driven water scar-
city caused by socio-physical factors, including water supply, human-
made reservoirs, lakes, and sectoral water consumption. Therefore, it
is essential to consider multiple indicators for assessing extreme
events68, including SPEI48, SRFI48, and SWSI48. Although this study
focuses on socio-physical water scarcity, incorporating water quality
and environmental flows, as highlighted by Liu et al.9, is critical for a
holistic understanding of future water risks.

Using the FARmethod, we found that the contribution of human-
induced climate change to DZD increases throughout the twenty-first
century (Supplementary Fig. 9). Identifying ToFE with a very high
attribution confidence (FAR ≥0.99) of human-induced signal relative
to the pre-industrial period (1850–1899) provides robust scientific
attribution, but it offers limited practical guidance for planning and
adaptation, since most water infrastructure and management systems
were designed based on the late twentieth-century (Supplementary
Fig. 6) climatic conditions rather than pre-industrial norms. Regions
with FAR <0.99 (Supplementary Fig. 19) may still face DZD in the
future, but with weaker anthropogenic attribution.

DZD, which has threatened Cape Town, is a multifaceted crisis
that disproportionately affects low-income communities and exacer-
bates socio-economic inequalities69. It affects the domestic water
supply, particularly in urban areas, with cascading effects on public
health and societal risk. The impacts of drought vary across regions
and sectors, with the least developed countriesmost vulnerable due to
disparities in physical, social, economic, and knowledge-based
factors70. In agriculture, DZD can reduce crop yields, threaten food
security, and impact livestock through water and feed shortages. The
need for sustainable irrigation of economically water-scarce cropland
is critical to alleviating food insecurity71. Water-reliant industries and
hydropower regions, including mining, can risk operational disrup-
tions, energy shortages, and economic losses. Prolonged drought can
degrade freshwater and terrestrial ecosystems, compromising water

quality, biodiversity, and long-term ecological resilience. These cross-
sectoral impacts underscore the need for integrated potential
solutions29 and adaptation strategies with equitable water governance
and management58 at a regional scale. To support such efforts and
reduce uncertainty in water scarcity assessment, expanded hydro-
logical simulations across diverse models and emission scenarios are
urgently needed.

Methods
Climate models simulations and observations
We use climate projection data from the Community Earth System
Model version 2 Large Ensemble (CESM2-LE) simulation72. This is a 100-
member single-model ensemble simulation using the Shared Socio-
economic Pathways SSP3-7.0 scenario covering the period 1850
through 2100. The atmospheric data have a 1-degree spatial resolution,
which serves as the reference for the interpolation of all CESM2-LE
variables used in this study to ensure the consistency across datasets
for the spatial analysis. We use monthly mean data, derived from daily
data, including average temperature, maximum temperature, mini-
mum temperature, and total precipitation fromCESM2-LE.We alsouse
river discharge (Supplementary Fig. 2) over land from the Model for
Scale Adaptive River Transport (MOSART), the CESM2-LE river model
component. In addition, we use the same variables from the European
Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5
(ERA5-Land) within the period 1979–2022, as well as river discharge
data from the Global Flood Awareness System (GloFAS) hydrological
time series forcedwith ERA5meteorological reanalysis (GloFAS-ERA5).
To assess the sensitivity of our results tomodel structure and emission
scenarios, we also include simulations from the Centre National de
Recherches Météorologiques (CNRM)model under both SSP3-7.0 and
SSP2-4.5 scenarios. For consistency, we analyze 10 ensemblemembers
available for each scenario and consider the same hydroclimatic vari-
ables as used with CESM2-LE. Due to the coarser spatial resolution and
limited ensemble size of the CNRM simulations relative to CESM2-LE,
theCNRMmodel is used exclusively for sensitivity analysis of the event
emergence time. TheCESM2-LE large ensemble enables us to compute
probabilistic estimates of the ToFE, duration, and waiting time of
extreme events. Our 100-member CESM2 large ensemble provides
enough data to robustly estimate extreme event statistics. Only
CESM2-LE and CNRM provide the variables necessary for our analysis,
so other large ensemble simulations cannot be used in our study.

Weuse the global reservoirsdatabase,which includes information
on reservoir location, capacity, and the long-term average discharge
(1971–2000) available from the Global Reservoir and Dams (GRanD)73

database. The global reservoir database includes both reservoirs
constructed by humans and natural lakes, according to Lehner et al.73.
The GRanD database version 1.3 was used due to its highly adaptable
geodatabase that offers expanded attribute coverage and spatial pre-
cision, making it possible to implement regional or global analysis at
unprecedented spatial resolution73–75. We assigned reservoirs to the
closest grid point in CESM2-LE to facilitate integration with climate
model outputs.

The monthly global gridded water consumption data for sectoral
water use under SSP3 and SSP2, and the Representative Concentration
Pathways scenario, RCP6.0 andRCP4.5, covering the period from 2010
to 2100, were downloaded from Khan et al.76. Both scenarios are
available from the same five Global Climate Models (GCMs): GFDL,
HADGEM, IPSL, MIROC, and NORESM. We use the available SSP3-
RCP6.0 data due to the unavailability of sectoral water use data for
SSP3-RCP7.0. We consider the available water demand data from dif-
ferent sectors, such as domestic, irrigation, industry, electricity, live-
stock, and mining, to capture the socio-economic development water
use demand. To our knowledge, there are no global historical and
observed data for sectoral water consumption, covering in particular
domestic, irrigation, industry, electricity, livestock, andmining, for the
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historical period from 1850 to 2009. This lack of historical and
observational data represents a major challenge for the analysis of
long-term water demand. Therefore, we reconstruct the water con-
sumption data from 1850 to 2009 using a backward nonlinear loga-
rithmic regression approachbased on theDose-ResponseCurve (DRC)
model in R77. The model is trained with each specific month of future
water consumption for the period 2010–2100 and then applied to
predict past values. Specifically, the logarithmic curve DRC.logCurve()
function is used to estimate water consumption for eachmonth of the
year for the period 1850–2009. This approach is implemented for each
grid point from the global climate models provided by Khan et al.76 to
obtain a monthly gridded long-time series of water demand for the
study period, from 1850 to 2100, for each grid. Importantly, to pre-
serve the seasonal cycle and interannual variability, the nonlinear
model was fitted independently for each month: for example, the
curve was fitted using all January values from 2010–2100 to recon-
struct the backward trend for January from 2009 to 1850; this process
was repeated separately for each calendar month (January to Decem-
ber), in each grid cell of each GCMs. Thismethod allows us to generate
plausible historical estimates that align with the socio-economic
trends incorporated in the scenario data, while recognizing the asso-
ciated uncertainties. We acknowledge that this method introduces
uncertainties as it assumes smooth socio-economic transitions over
time and does not explicitly account for unexpected historical dis-
ruptions in water use patterns or development pathways, such as
technological innovations or abrupt policy changes. Additionally, the
reliance on the scenario means that reconstructed trends reflect a
world characterized by high socio-economic fragmentation and chal-
lenges to sustainable development, which may not fully align with
actual historical pathways. Despite these limitations, this reconstruc-
tion approach offers an estimate of historical water consumption
trends, maintaining spatial, temporal, and sectoral variability. The
spatial patterns and temporal evolution of water demand, along
with inter-period differences, are illustrated in Supplementary
Fig. 3. These reconstructed datasets serve as structured estimates
to support consistent analysis across regions and sectors. The
spatial resolution of all data is interpolated to the CESM2-LE and
CNRM resolution using the first-order conservative remapping
(remapcon) method from the Climate Data Operator78 (CDO) for
their respective analysis.

We also use global spatial population datasets from the history
database of the global environment (HYDE), version HYDE3.3 from
Klein Goldewijk et al.79, to assess the population exposure from 1900
to 2009 at decadal intervals. In addition to that, we use the global
spatial population projections SSP3 scenario obtained from the
National Center for Atmospheric Research (NCAR)80, from 2010 to
2100, at decadal intervals to assess the future population exposure.
The population datasets were interpolated to a 1-degree spatial reso-
lution for our study, the same grid as CESM2-LE, using the sum of the
source points remapping (remapsum) method from the CDO to con-
serve the total sum of the population.

Water stress indices
The drought index, Standardized Precipitation-Evapotranspiration
Index (SPEI), is a widely used indicator for investigating drought
characteristics81–86, including onset, duration, and magnitude. This
study uses the SPEI to quantify and classify drought severity due to
its capacity to reflect the change in water deficiency. The index does
not account for actual water losses from the land surface but con-
siders potential evapotranspiration (PET), a significant factor87 in
the future risk of extreme drought83, making it more robust in
categorizing drought and detecting its onset and evolution in the
context of global warming88 due to its contribution to the interac-
tion of land-atmosphere conditions and drought87. Thus, the
monthly gridded SPEI was obtained through the method proposed

by Vicente-Serrano et al.88 using the modified Hargreaves method89

to investigate the importance of the range of maximum and mini-
mum temperatures in drought conditions. Moreover, the SPEI
allows comparisons between regions across different climatic con-
ditions and considers the onset and duration of drought. The SPEI
can be used to investigate the impact of prolonged multi-year
drought trends on hydrological and ecological variables, as well as
on water storage deficits90,91. SPEI can effectively be utilized to
depict the hydrological drought on a longer time scale91. However,
hydrological drought is a complex phenomenon involving various
factors92–94 such as runoff or stream flow95, water balance, human
activities, and water demand. The interaction between precipita-
tion, soil moisture, runoff, recharge, groundwater, and discharge
has been known65, but its application to drought is relatively recent.
Thus, the causes of hydrological drought are complicated as they
involve the atmosphere and hydrological processes that supply
moisture to the atmosphere, contribute to water storage, and
generate runoff to streams93. In addition, the streamflow drought
will be defined as amulti-year insufficient river discharge, as most of
the water supply comes in the form of river flow or runoff after all
surface physical processes have been completed. In snow-fed river
systems, river flow can still act as a water supply independent of
immediate precipitation inputs. For instance, during periods of low
precipitation, melting snow can sustain river flow. This is where the
Standardized River Flow Index (SRFI) plays a crucial role, as it cap-
tures river drought conditions based on streamflow variations,
reflecting both precipitation-driven and non-precipitation-driven
water inputs. Therefore, we use a single input standardized drought
index, called SRFI, the same as Vicente-Serrano et al.96, to represent
and categorize the severity of the river flow resource depletion. The
river discharge data was used as the input to calculate SRFI. The
concept of the calculation of SPEI and SRFI is made by fitting an
empirical cumulative distribution function to reference periods
(1979–2014), using the spei() function in R as proposed by Begueria
and Vicente-Serrano97. The fitted distribution is then applied to the
monthly cumulative precipitation-evapotranspiration (SPEI) or
streamflow (SRFI) to obtain cumulative probabilities, which are
transformed into a standard normal distribution. This process
effectively standardizes the data relative to the reference period
(1979–2014), allowing for easy interpretation. Both drought indices,
SPEI and SRFI, were computed at a 48-month timescale for each grid
cell in every ensemble member of CESM2-LE and CNRM, covering
the period from 1850 to 2100.

To investigate the degree of water scarcity, we adopt the
Standardized Water Scarcity Index (SWSI), which is conceptually
equivalent to the Supply and Demand Balance Index introduced by
Huang and Yin98, to represent the overexploitation of the water
resources when the demand exceeds the supply. This index cap-
tures the imbalance between water availability and demand by
taking the ratio of total water supply to total water consumption.
The SWSI with a time scale of 48 months is used. The SWSI was
chosen due to its capacity to represent the dynamic processes98

between the interaction of the water supply and demand for
domestic usage and production in a region. The SWSI48 is the ratio
of the 48-month accumulated total water supply and 48-month
accumulated total water demand. The total water supply is esti-
mated as the sum of surface water resources, including river flow
and the net water balance (precipitationminus evapotranspiration),
representing the available freshwater availability. The total water
demand is the sum of water consumption from all sectors, such as
domestic (dom), irrigation (irrig), industry (ind), electricity (elec),
livestock (liv), and mining (min). Therefore, to calculate SWSI48, the
total water consumption from the five Global ClimateModels (GCMs)
provided by Khan et al.76 (GFDL, HADGEM, IPSL, MIROC, and NOR-
ESM) is randomly distributed across the total water supply from the
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CESM2-LE and CNRM (see Supplementary Fig. 1 for further details).

SWSI48=
TWS48
TWC48

=
ðPrec� E + f lowÞ48

ðdom+ irrig + ind + elec+ liv+ minÞ48
ð1Þ

where TWS is the total water supply, Prec represents the precipitation,
E is for evapotranspiration, flow for the river flow, and TWC represents
the total water consumption.

The definition of water scarcity from Huang and Yin98 is used for
the degree of SWSI48, as extreme lack of water [0,0.3], acute shortage
of water [0.3,0.6], moderate water shortage [0.6,0.9], slight shortage
of water [0.9,1], and no shortage of water [≥1].

To assess the interdependence among the water stress indicators
used in this study, we computed spatial correlations between the
ensemble means of the SPEI48, SRFI48, and SWSI48 derived from
CESM2-LE simulations over the period 1850–2100. All-time series were
detrended to remove systematic long-term trends associated with
climate change and ensure that correlations reflect interdependence
among the indicators. Supplementary Fig. 4 shows strong positive
correlations acrossmost regions, indicating that thewater stress tends
to vary together over the multi-year time scales of 48 months. In
contrast, the negative correlations between SPEI48 and SWSI48, and
between SRFI48 and SWSI48, are generally weak, particularly across
Africa, reflecting the influence of non-climatic drivers such as water
demand on SWSI48. Overall, both weak positive and negative corre-
lations are observed in many regions, suggesting a more complex
relationship between climate-driven drought indicators (SPEI48 and
SWSI48, and SRFI48 and SWSI48).

Bias correction (BC)
In order tominimize themodel errors, this study used abias correction
method to reduce model bias. Supplementary Fig. 1 shows a more
detailed structure of the steps in the methods and the processes used
in this study. The monthly database from ERA5-Land (1979–2022) was
used to calculate ERA5’s SPEI48 and SRFI48, with 1979–2014 as the
reference period, which is used as the observational drought indices
reference to calibrate the drought indices for each ensemble member
of CESM2-LE individually. Although observational sources are the best
to achieve the ideal bias correction, we opted for reanalysis products
because they consistently assimilate a variety of variables in a physi-
cally consistentmanner, and it is assumed tobe close toobserveddata.
This choice ensures global coverage and temporal completeness,
particularly important in data-sparse regions or for long historical
records where high-quality observational data are unavailable or
inconsistent. The ERA5-Land dataset was found to be a trustworthy
reference to calibrate CESM2-LE indices. In order to increase our
confidence in future extreme drought projections, we applied the
univariate Quantile Delta Mapping (QDM), as Ansari et al.99 found it to
be more robust for the correction of indices. Supplementary Fig. 14
shows that direct correction (post-processing QDM) of the drought
indices as a single variable reduces the bias between ERA’s SPEI48 and
the ensemble mean of the CESM2-LE’s SPEI48 andmanages to capture
the distribution of SPEI48. In addition, Van de Velde et al.100 stated that
the simpler univariate BCmethods are better to use for climate change
impact assessment, as the multivariate BC methods failed to handle
non-stationaryclimate conditions.This approachmaintains themodel-
projected climate change signal while simultaneously correcting the
distributional biases. The QDMbias correctionmethod, introduced by
Cannon et al.101, is a cumulative distribution function (CDF)-based bias
correction method designed specifically to reduce the biases between
the modeled and observed distribution of drought indices, while
preserving the model-projected climate change signal. The additive
form of QDM is applied to bias correct the systematic biases in each
quantile of the drought indices calculated from the CESM2-LE and
CNRM simulations, using the ERA-derived indices as observational

references while preserving the model-projected absolute changes
across all quantiles of the distribution. The important concept of QDM
is its ability to maintain the trend in all the quantiles within the dis-
tribution of the climate model output, which is important when future
changes are not uniform across the distribution. It is used to quantile
detrend the model projections and adjust distributional biases in
model projections, ensuring the sensitivity of the underlying climate
model without affecting the distribution101–103. The QDM begins by
identifying the corresponding quantiles of the observed, model his-
torical (or reference for the calibration), and the model future pro-
jection, as a corresponding quantile-based correctionderived from the
model-observation mapping. Instead of directly fitting the full dis-
tribution of the future model, QDM quantifies the change at each
quantile between the historical and future period model values at that
same quantile level. These changes are then applied to the observed
value at the corresponding quantile, retrieved using the inverse CDF of
theobserveddata. This allows distribution biases to be correctedwhile
maintaining quantile-specific climate change signals, thus preserving
the sensitivity of the climatemodel. The univariate bias correction was
performed using the QDM method available in the Multivariate Bias
Correction (MBC) package in R. For each grid cell, drought indices
from each member of the CESM-LE and CNRM are corrected inde-
pendently, using their quantile location relative to the observed (ERA5)
drought indices. Specifically, each value of SPEI48 and SRFI48, com-
puted from each grid cell of every ensemble member of the CESM2-LE
and CNRM datasets, within the period 1850-2100, is corrected as a
single variable following the direct QDM approach, respectively. To
correct the bias in SWSI48, we applied the univariate QDMmethod to
the total water supply (precipitation-evapotranspiration + river dis-
charge) at each grid cell of each ensemble member of CESM2-LE and
CNRM, treated as a single aggregated time series rather than bias-
correcting each individual component (i.e., precipitation, evapo-
transpiration, and river discharge). This aggregated variable repre-
sents the net variable water and is more relevant for capturing water
scarcity as reflected in SWSI48. We could not apply the bias correction
of the total water demand (consumption) due to the unavailability of
consistent observed sectoral water use data across the historical per-
iod at the global scale.

To assess the effect of different bias correction strategies, we
evaluated both pre- and post-processing approaches using CESM2-LE
under the SSP3-7.0 scenario. As shown in the Supplementary Fig. 14,
post-processing (i.e., direct bias correction of SPEI, Supplementary
Fig. 14c) better captures the distribution of SPEI from ERA5 (Supple-
mentary Fig. 14a), while pre-processing (i.e., bias correction of pre-
cipitation and temperatures prior to computing the index;
Supplementary Fig. 14d) tends to introduce additional bias, particu-
larly by amplifying wet conditions. These results support the effec-
tiveness of the post-processing approach in preserving the observed
statistical properties of the drought indices.

Furthermore, we evaluated the distributional properties of the
corrected indices using Q-Q plots, shown in Supplementary Fig. 14e–j.
These plots compared the quantiles of SPEI48 from CESM2-LE (with
and without correction) and ERA5, both at the global mean scale and
for a representative grid point (longitude 43.40° and latitude −23.21°).
TheQ-Qplot revealed that the bias-corrected indices closely follow the
normal distribution, especially compared to the raw model output. At
the grid level (longitude 43.40° and latitude −23.21°), the correction
successfully adjusted for extreme droughts and ensured consistency
with observed drought characteristics.

Overall, our bias correction method effectively improves the dis-
tributional agreement betweenCESM2-LE and ERA5, whilemaintaining
long-term trends. This provides a more accurate basis for assessing
drought characteristics and their implications for water scarcity under
historical and future climate conditions. As with most bias correction
methods, QDM has limitations, as it assumes that model biases are

Article https://doi.org/10.1038/s41467-025-63784-6

Nature Communications |         (2025) 16:8281 10

www.nature.com/naturecommunications


relative to the present reference dataset, which may change in the
future. Although this assumption simplifies the correction process, it
may not hold under evolving climate conditions.

Time for Reservoirs to Dry (TRD)
An important aspect of drought impacts is the availability of water in
reservoirs. The onset of drought conditions and continuing water
demand will also affect reservoir water levels. To assess the severity of
the drought events, we have to also consider the Time for the Reser-
voir to Dry (TRD) as the ratio of the maximum capacity and the
monthly average discharge at reservoir locations, by considering only
the reservoirs with verified, good and fair quality index73, which
represents 93% of the GRanD’ reservoirs (Supplementary Fig. 5).

TRD =
maximum capacity of the reservoir

monthly average discharge at reservoirs
ð2Þ

For human-made reservoirs, the maximum capacity refers to the
maximum value of the storage capacity, and for natural lakes, it is the
given lake level by Lehner et al.73. The lack of water level time series in
the reservoirs makes it hard to estimate the time scales by which they
might run dry. Instead of the available capacity of the reservoir
(maximum minus minimum capacity), the maximum capacity was
used because it was a readily available parameter for most reservoirs
and due to the lack of the points layer of minimum capacity in the
GRanD database. Moreover, climate change may alter the future
operation of reservoirs, so using the maximum capacity is useful for
assessing the suitability of water storage strategies. The TRD is similar
to the resident time (time of water spent in reservoirs) and can be
considered as the duration to take for a drought event to dry the water
in the reservoirs if the only source of the water supply of the reservoirs
is the depleted river flow during a drought period. This reflects
hydrological drought situations in which rivers continue to flow, albeit
at diminished levels insufficient to meet water demand, allowing
assessment of how long reservoirs can sustain supply under such
stress.

Compound multi-year hydrological drought
We define the compound multi-year drought, based on the IPCC104

definition of a compound event, as extended periods, often spanning
several years (e.g., 48 months or 4 years for this study), during which
multiple hydrological indicators, such as long-term rainfall deficiency,
streamflow, water demand, and reservoir storage, experience simul-
taneous andpersistent deficits. Here, thesedroughts are characterized
by the concurrent occurrence of below-normal water availability
across various hydrological systems, exacerbated by interrelated fac-
tors such as reduced precipitation with increased evapotranspiration
(SPEI48), increase in water consumption (SWSI48), and depleted river
flow (SRFI48). The compound nature of these events indicates the
presence of multiple interacting drivers that collectively intensify
water scarcity over a prolonged period.

Day zero drought definition
We define “Day zero drought” (DZD) as an acute water scarcity event
driven by a compound multi-year hydrological drought, during which
water demand exceeds water supply under prolonged drought con-
ditions. DZD occurs due to a critical imbalance between supply and
demand, driven both by climate-induced reduction in supply and
anthropogenic pressures increasing demand.

In fact, water can be retained in the reservoir through different
parts of the hydrological cycle and different resident times (time of
water spent in reservoirs) considered similar to TRD. As the river flow
contributes to the long-term storage of water in the reservoir, we
considered the river discharge to be an appropriate parameter. DZD is
the impact of the simultaneous occurrence of a long-term (48-month)

critical rainfall deficiency and extremedearth ofwater of low-flow river
discharge during a prolonged drought in the context of global
warming and long duration exceeding the time for the reservoirs to
run out of water. This is formalized as follows:

DZD occurs if
SPEI48� 1:5 \ SRFI48� 1:5 \ SWSI480:6, durceTRD, if reservoir exists:

SPEI48� 1:5 \ SRFI48� 1:5 \ SWSI480:6, if there is no reservoir:

� ð3Þ

where durce is the duration of the compound extreme. The identifi-
cation of DZD was carried out at each grid cell across each of the 100
members of the CESM2-LE model, offering a comprehensive and
probabilistic perspective on future water scarcity risk.

However, global warming is expected to disrupt and intensify the
variability of the water cycle16, leading to increasingly frequent and
severe fluctuations between excessively wet and dry periods17.Warmer
climates are projected to enhance the evapotranspiration, resulting in
dry conditions18. Additionally, reductions in precipitation and surface
runoff are expected inmany regions16, further increasing the likelihood
of both climatological and hydrological droughts19–22. Moreover,
population growth, economicdevelopment, and expansion ofmodern
agriculture drive the rise in water consumption, placing additional
pressure on water resources. Therefore, dry conditions driven by
anthropogenic climate change and socio-economic development are
jointly altering the global balance between water supply and demand,
thereby amplifying the riskofDZD.Our conceptdistinguishes between
drought and water scarcity, while also capturing their interaction in
driving the DZD event. Drought refers to a reduction in water avail-
ability either through decreased precipitation, increased evaporation,
or reduced river flow. In contrast, water scarcity arises when water
demand exceeds the available water supply. Water Scarcity is often
human-driven from anthropogenic pressure, such as population,
growth, agricultural expansion, industrial use, andmismanagement of
water resources. Water scarcity can occur even in the absence of cli-
mate change if water use is unsustainable. In this study, we focused on
water scarcity driven by drought, where the reduction of water supply
is driven by dry conditions. In this context, the water stress is con-
sidered as a result of a compound event due to atmospheric conditions
(precipitation and evaporative demand; SPEI48), streamflow condi-
tions (SRFI48), and demand condition (SWSI48) of 48-months occur
with important depletion of water supply and increase of water
demand; andwhere the durationof the event is longer than the time of
the closest reservoirs to dry (TRD). This study offers a global-scale
assessment of DZD emergence and its characteristics, capturing the
interactions between climate human-driven factors.

Therefore, DZD is considered as an extreme water scarcity event,
characterized by the fact that the water resources available in a region
are largely below the limited reservoir’s capacity compared to the pre-
industrial period. This is attributed to both anthropogenic climate
change and an increase in water use. To our knowledge, this study is
the first global-scale assessment of the timing of the emergence of Day
Zero Drought conditions and its characteristics. DZD is characterized
by the concurrent exceedance of critical threshold in four indicators:
(1) The standardized Precipitation-Evapotranspiration Index (SPEI48)
below minus 1.5 (SPEI48 ≤−1.5, exceedance of 1.5 standard deviations,
signifying 1.5 standard deviation droughts to classify the arid atmo-
spheric condition, through prolonged deficits in precipitation and
increased evapotranspiration, leading to a long-term surface water
stress and can significantly influence the change in groundwater
(Supplementary Fig. 13). (2) The Standardized River Flow Index
(SRFI48) below minus 1.5 (SRFI48 ≤−1.5, exceedance of 1.5 standard
deviation), signifying 1.5 standard deviation droughts, to detect the
depletion of river flow conditions, representing the state of the severe
drought in river flow during dry periods. (3) The Standardized Water
Scarcity Index (SWSI48) below 0.6 (SWSI48 ≤0.6) is used to quantify
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the imbalance between total water supply and demand and to repre-
sent the long-term average insufficiency of resources relative to
demand during periods of drought, leading to an acute water scarcity.
(4) The duration of the compound event (durce) exceeding the esti-
mated time for reservoir depletion (TRD), when reservoirs exist. If no
reservoir is present, the DZD is defined by the first three indicators.
This framework reflects the reality that water scarcity emerges from
the convergence of multiple stressors. Each indicator plays a distinct
but interrelated role in defining DZD; therefore, none is weighted as
more important than another. Their simultaneous exceedance is
necessary to identify a DZD event, filtering out less severe or isolated
events. For instance, precipitation deficits alone may not result in a
crisis without demand pressure. i.e., in low low-demand case, just as
high demand may not lead to scarcity if the supply is still enough.
Similarly, even in the absence of climate variability, unsustainable
consumption alone can trigger water scarcity if water use surpasses
the available resource.

To evaluate the CESM2-LE ability to reproduce observed com-
pound drought conditions, we compared the spatial distribution of
compound hydrological extremes computed from the ERA5-Land
reanalysis andCESM2-LE (ensemblemean of the number of compound
hydrological events) data for the period 1979–2022. Specifically, we
examined the number of occurrences where both 48-month scales of
Standardized Precipitation-Evapotranspiration (SPEI48) and Standar-
dized River Flow Index (SRFI48) were less than or equal to −1.5. This
threshold represents severe to extreme dry conditions. Instead of
comparing the ToFE of compound events, we investigate the number
of events of joint occurrences with SPEI48� 1:5 \ SRFI48� 1:5. Due to
the lack of observed data on total water consumption across all sectors
(domestic, irrigation, industrial, electricity generation, livestock, and
mining), we were unable to include the 48-month Standardized
Water Scarcity Index (SWSI48) in this observation comparison. The
result (Supplementary Fig. 18) indicates that CESM-LE reasonably
captures the spatial patterns of compound events defined by
SPEI48� 1:5 \ SRFI48� 1:5, as observed in ERA5. Although ERA5
exhibits slightly more compound events overall, the CESM2-LE
ensemble mean estimates comparably and even exceeds ERA5 over
China and Russia, indicating possible regional differences in model
response.

Detection of the time of first emergence
In this study, we use the Fraction of Attributable Risk (FAR) of the joint
probability to define the Time of the First Emergence (ToFE) of the
DZD. FAR has been found to be effective in identifying the anthro-
pogenic signal behind extreme events105–107 such as DZD. According to
Perkins-Kirkpatrick et al.105, FAR can be useful for understanding cli-
mate change signals, but more useful results are achieved by refo-
cusing attribution questions on changes in impact return value and
magnitude across large samples. To the best of our knowledge, the
evaluation of ToFEof theDZD relative to the anthropogenic signalwith
a predefined threshold of joint probability by FAR has not yet been
carried out. Therefore, this study proposes an innovative method to
assess the ToFE of compound extreme events by considering human-
induced attribution. Few studies have used different alternatives to
define or identify the ToFEwhen the hydrological drought differs from
their past counterparts38. We are aware that even with such different
methods, including our method here, uncertainties may arise, for
example, due to internal variability108 or the considered scenarios109. By
applying the FARmethod, wemeasure the influence of anthropogenic
climate change by comparing the probability of occurrence of DZD in
the baseline period (pre-industrial period: 1850–1899) with the
anthropogenic forcing period. We identify DZD events using a
threshold-based approach, as outlined in Eq. (3). This ensures that the
events are derived from the indices (SPEI48, SRFI48, and SWSI48) and
reflect extreme drought event conditions and acute water scarcity. By

applying a threshold-based approach, we transform the continuous
drought indices into distinct, binary events (e.g., DZD or no DZD).
Which aligns with the requirements for FAR analysis. Once the DZD
events are identified, the events are treated as independent occur-
rences, ensuring that the FAR method is aligned with its intended
purpose of analyzing distinct extreme events. The calculation of the
probability of the forcing events has been conducted on decadal time
scales. The FAR is based on the change in the occurrence of an inde-
pendent event, which is quantified by dividing the probability of
independent DZD events in the future by the preindustrial condition.

FARðtÞ= 1� Ppreindustrial

Pf orcing ðtÞ
with

Ppreindustrial =
Pens100

ens1
eventi,preindustrial ðDZDÞ
Npreindustrial

Pf orcing ðtÞ=
Pens100

ens1
eventðtÞi, f orcing ðDZDÞ
Nforcing ðtÞ

8>><
>>:

ð4Þ

Where Ppreindustrial represents the probability of the counterfactual
scenario, which is calculated as the ratio between the total number of
DZD event occurrences across all 100 ensemble members during the
preindustrial period (1850–1899) and the total number of samples
within the same period (Npreindustrial). While Pforcing ðtÞ represents the
probability under the factual scenario, which is the ratio between the
decadal total number of DZD event occurrences across all 100
ensembles during each decade from 1900 to 2100 and the total
number of samples during that decade (Nforcing ðtÞ). The ToFE ofDZD is
identified as the first decade in which the FAR is greater than 0.99,
where a 99% probability of the impact of the acute water scarcity that
has emerged can be associated with a human-induced signal after the
decade of completion of reservoirs (Supplementary Fig. 6). We
computed the ToFE by considering the year of construction of a
reservoir. Each reservoir hasadifferent yearof construction; therefore,
if a reservoir existed in the considered grid point, the DZD detection
period would extend from the year of completion to 2100. But if there
is no reservoir, we use 1900–2100. Hence, we aim to detect events that
have not occurred during the preindustrial period, but which will
occur and intensify in the future as a result of anthropogenic global
warming. In that sense, we identify unprecedented hydrological
extreme events.

DZD characteristics: waiting time and duration
While the ToFE is an importantmeasure of global warming impacts, its
true impact is measured by how long these events last and how soon
theywill re-occur once they have emerged for the first time. The length
of timeof aDZDevent is defined as theDZDduration,while thewaiting
time is identified as the time elapsed between the end of the previous
event and the start of the next consecutive DZD event, as illustrated in
Supplementary Fig. 8. To quantify these characteristics, we calculate
the DZD duration and waiting time at each grid cell globally across the
CESM2-LE for all ensemble members. We calculate the waiting time
directly by counting the number of months after the decade of the
ToFE under anthropogenic influence until the next event, for all con-
secutive DZD events until 2100, while the duration is calculated by the
length of a DZD event once it occurs.

In addition, we assess the frequency of extreme DZD conditions,
characterized by events that are both frequent and prolonged. Speci-
fically, for each grid point and each ensemble member of CESM2-LE,
we identify all DZD events occurring between the decade of ToFE and
the year 2100. We then count the number of DZD event where its
duration exceeds the waiting time, i.e., cases where the DZD event
persists longer than the recovery period before the next event. These
counts are aggregated at each grid across all 100 members of CESM2-
LE within the ToFE and 2100. The frequency of extreme DZD condi-
tions is computed at each grid cell as the ratio of the sum of these
events to the total DZD events across all members of CESM2-LE within
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the ToFE and 2100 period. This spatially explicit frequency is then
mapped globally (Fig. 3c) to highlight regions most vulnerable to
sustained and recurrent DZD conditions.

For each DZD-prone region shown in central spatial map of Fig. 3,
we then average the values across all grids located within the regions.
To characterize the statistical distribution of these metrics, we fit
probability density functions (PDFs) to the distributions of DZD
duration and waiting time.

Global warming level (GWL)
The ToFE depends partly on the used global warming scenario. In
order to provide an alternative view, we also estimated the global
warming levels at each DZD event emergence. We use the method
proposed by Batibeniz et al.110 to calculate the GWL, but for this study,
we consider the difference between the global 30-year climatology
backward on the analyzed decade (1900–2100) and the global mean
temperature of the pre-industrial period (1850–1899). The GWL is the
value of the GWL in the decade of ToFE.

Sensitivity analysis
We tested the sensitivity of ToFE to six factors. Firstly, the threshold for
defining themulti-year compounddrought can influence thedetection
of DZD. Therefore, to test the robustness of the DZD definition, we
performed a sensitivity analysis using different thresholds for SPEI48,
SRFI48, and SWSI48 (Supplementary Fig. 10). First, we modified the
SPEI48 threshold to be below −2 and kept SRFI48 below −1.5 and
SWSI48 below 0.6 (Supplementary Fig. 10a, i). The ToFE emerges later
than in Fig. 2a, particularly in Africa, where ToFE is sensitive to SPEI48,
i.e., to the decreasing precipitation and increasing evapotranspiration.
Next, we slightly changed SRFI48 to be below −1.6, SPEI48 to be below
−2, and kept SWSI48 below 0.6 (Supplementary Fig. 10b, j). The ToFE
remains almost the same, and the ToFE emerges later by increasing the
severity of SRFI48 to be below −2 (Supplementary Fig. 10c, k), parti-
cularly in the northern part of Africa. Then, as we continued to modify
SRFI48 so that it is less than −1 (Supplementary Fig. 10d, l), the ToFE
becomes earlier than Fig. 2a, mostly in the northern part of Africa. The
ToFE is sensitive to the severity of the streamflow drought in Africa.
After that, we repeated the same analysis, but considering SWSI48 less
than 1, SPEI48 less than −2, and SRFI48 below −1.5 (Supplementary
Fig. 10e, m); while SRFI48 below 1.6 for Supplementary Fig. 10f, n. The
results show that ToFE ismore likely to start earlier than Fig. 2a in a few
regions, meaning that ToFE ismore likely to be sensitive to streamflow
depletion (SRFI48) and increased water consumption (SWSI48). In the
latter case, we kept SPEI48 below −1.5 and SRFI48 below −2 with
SWSI48 below 1 for Supplementary Fig. 10g, o; and SWSI48 below 0.6
for Supplementary Fig. 10h, p. The results show the sensitivity of the
ToFE to SRFI48 and SWSI48; thus, the ToFE emerges later than Fig. 2a
in Africa but earlier in other regions. Therefore, we can conclude that
the ToFE of DZD is more sensitive to the severity of decreasing pre-
cipitation and increasing evapotranspiration (SPEI48), the river flow
drought (SRFI48) and increasing water demand (SWSI48), particularly
in Africa, while increasingwater consumption solely have an impact on
the early emergence of ToFE in some parts of Asia and America,
compared to theother factor. The SRFI48 andSWSI48 aremore closely
related to the actual availability of river flow and water use, respec-
tively. When water demand rises, the available water supply (e.g., river
flow, even if unaffected by precipitation) becomes insufficient tomeet
demand, triggeringdrought-like conditions (orwater scarcity) in terms
of availability.

Secondly, to assess whether the treatment of grid cells with and
without (as defined in Eq. (3) for DZD) or solely without reservoir (DZD is
defined as a compound event of SPEI48� 1:5 \ SRFI48� 1:5\
SWSI480:6), introduces inconsistencies in the spatial patterns of ToFE,
we conducted a sensitivity analysis comparing ToFE patterns (Supple-
mentary Fig. 12). The results reveal that spatial differences are negligible

in most regions. The most noticeable delays are confined to the Medi-
terranean region, where major reservoirs constructions were completed
mid- to late-twentieth century (Supplementary Fig. 6). As climate change
influences theonsetof compoundevents, it is critical fordecision-makers
to revisit the role of existing water infrastructure in future water security
planning. The application of FAR greater than 0.99, combined with
localized reservoir adjustment of DZD detection, ensures that the global
ToFE pattern represents both high attribution confidence and hydro-
logical realism, without introducingmethodological biases between grid
cells with and without reservoirs.

Thirdly, the estimation of the TRDmay influence the ToFE of DZD.
The TRD is considered as the duration to take for a multi-compound
drought event to dry the water in the reservoirs if the only source of
thewater supply of the reservoirs is river flowduring a drought period.
Our approach seems to be reasonable, and we also checked the sen-
sitivity of our assumption by doubling and quadrupling the TRD time
scale (Supplementary Fig. 11). The results show that only a few regions
have a small change of one decade with increased TRD. However, the
TRD is also influenced by various socio-economic factors, such as
water demand and the socio-economic sectoral usage, which we
address using the Standardized Water Scarcity Index (SWSI48). It is
important to note that political decisions regardingmanagement were
not included in this modeling approach.

Fourthly, we have looked at the sensitivity of the time scale by
considering the 36- and 60-month time scales (Supplementary
Figs. 15 and 16) of long-duration compound events for SPEI, SRFI, and
SWSI. Only a few regions, located almost entirely in Africa, show
changes in ToFE using a 36 or 60-month timescale of extreme events,
as shown in Supplementary Fig. 17.

Fifthly, we look at the sensitivity of the ToFE relative to model
structure across the CESM2-LE members. We repeat the analysis,
looking at the model uncertainty by looking for the ToFE for each
member in CESM2-LE, based on the following formulation of FAR
below (Eq. (5)). This allows us to examine the spread of emerging
timing of Fay Zero Droughts (DZD) and to evaluate the inter-member
agreement as shown in Supplementary Fig. 20. The result exhibit,
Supplementary Fig. 20a, substantial variability among ensemble
members between 1900 and 1990, reflecting high uncertainty during
this early period when the anthropogenic signal is still weak relative to
internal variability, showing that structural uncertainty arising from
the use of a single model remains an important caveat. However, a
strong ensemble consensus emerged after 2000, with most members
indicating emergence between 2020 and 2030, and increasing agree-
ment toward the end of the twenty-first century. Individual ensemble
members (thin green lines) show very synchronized emergence
between 2030–2040. There is a sharp, narrow peak, indicating low
ensemble spread and high confidence in ToFE under strong forcing.
This coherence across members supports the robustness of our find-
ings in terms of both timing and magnitude of anthropogenic influ-
ence on DZD events in CESM2-LE under SSP3-7.0.

FARi tð Þ= 1�
Ppreindustrial, i

Pforcing, i tð Þ
with

Ppreindustrial, i =
eventpreindustrial, i DZDð Þ

Npreindustrial, i

Pforcing, i tð Þ=
event tð Þforcing, i DZDð Þ

Nforcing, i tð Þ

8<
: ð5Þ

WherePpreindustrial, i is theprobability of the counterfactual formember
i, which is the ratio between the summation of the event of the DZD
event within the preindustrial period (1850-1899) and the number of
samples within the same period (Npreindustrial). While Pforcing, iðtÞ is the
probability of the factual for member i, which is the ratio between the
decadal summation of the frequency of theDZDevent of themember i
during each decade from 1900 to 2100 and the number of samples
during the decade (Nforcing ðtÞ). The ToFE of DZD has been considered
as the first decade of FAR greater than 0.99, where a 99%probability of
the impact of the acute water scarcity that has emerged can be
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associated with a human-induced signal after the decade of comple-
tion of reservoirs.

Sixthly, to evaluate the influence of model structural uncertainty
on the ToFE of DZD events, we extended our analysis beyond CESM2-
LE by usinghydro-climatic data from theCentreNational deRecherche
Météorologiques (CNRM) models (SSP2-4.5 and SSP3-7.0 with 1.4 ×1.4
degrees) from the Coupled Model Intercomparison Project Phase 6
(CMIP6). Specifically, we analyzed simulations under the SSP2-4.5 and
SSP3-7.0 scenarios, including monthly precipitation, minimum and
maximum temperature, and river discharge data spanning 1850-2100.
Due to the unavailability of water demand projections under SSP3-7.0,
we used water consumption estimates from SSP3-RCP6.0 across the
five Global Climate Models (GCMs) from GFDL, HADGEM, IPSL,
MIROC, and NORESM, which account for sectoral water use sectors
such as domestic, irrigation, industry, electricity, livestock, and
mining, capturing socio-economic development water use demand.
We applied the samemethodology used for CESM2-LE. Computing the
three key indicators, the SPEI48, SRFI48, and SWSI48, and applying
quantile delta mapping (QDM) bias correction using drought indices
ERA5-based references. To ensure methodological consistency and
data completeness, we selected 10 ensemblemembers from theCNRM
model that include both atmospheric and river discharge variables
across historical andboth SSP2-45 and SSP3-7.0 future scenarios: CM6-
1 (r2i1p1f2, r3i1p1f2, r4i1p1f2, r5i1p1f2, r6i1p1f2), ESM2-1 (r2i1p1f2,
r3i1p1f2, r4i1p1f2, r5i1p1f2), and CM6-1-HR (r1i1p1f2). We use the
methods as structured estimates that enable consistent analysis across
regions and sectors. The spatial resolution of the datasets is inter-
polated to the CNRM atmospheric model resolution (1.4° x 1.4°) using
the first-order conservative remapping (remapcon) method from the
Climate Data Operator78 (CDO).

The spatial patterns (Supplementary Fig. 21) reveal pronounced
inter-model and scenario differences. Results from the CNRM model
indicate that, under both SSP2-4.5 and SSP3-7.0 scenarios, 51% of DZD-
affected regions are projected to face unprecedentedwater scarcity by
2100, with 22% experiencing emergence as early as 2020–2030 (Sup-
plementary Fig. 21b, c). Compared to CESM2-LE (Supplementary
Fig. 21a), which projects later DZD emergence and a more geo-
graphically confined hotspot, especially in the Mediterranean, the
United States of America (USA), and Africa, the CNRM model (Sup-
plementary Fig. 21b, c) shows earlier andmorewidespread emergence.
The inter-model comparison (Supplementary Fig. 21d, e) reveals that
CESM2-LE and CNRM disagree on the emergence of DZD in 76% of
DZD-prone regions, indicating that emergence is detected in only one
of the two models in some areas. Notably, 14% of ToFE show later
emergence under CESM2-LE (Supplementary Fig. 21d), even under the
same forcing scenario (SSP3-7.0), suggesting that CESM2-LE is more
conservative in detecting later emergence of compound hydrological
extremes. However, CESM2-LE and CNRM agree on DZD occurrence
across 24% of the DZD-prone land area, though within this overlap,
CESM2-LE projects later emergence over 14% of the area and earlier
emergence over 10% compared to CNRM.Moreover, ensemble spread
within CNRM (Supplementary Fig. 20b, c) also illustrates the variability
among themodels to detect the water scarcity. The PDFs of individual
members are more dispersed, with multiple peaks and flatter. The
thick green line (representing ToFE derived from Eq. (4)) is broader
and flatter, indicating the variability in ToFE across ensemble mem-
bers, reflecting uncertainty in the timing of DZD emergence across
members. This variability emphasized the challenge of detecting a
robustprobabilistic signal froma limited ensemble size. Thesefindings
highlight the critical role of model structural differences in shaping
projections of hydrological extremes. Importantly, probabilistic attri-
bution methods, such as the FAR, require large ensemble sizes to
confidently characterize forced emergence signals. The relatively small
ensemble available for CNRM under SSP3-7.0 limits the reliability of
such analysis and reinforces the need for larger and more consistent

multi-model ensemble frameworks to assess future water
scarcity risks.

Finally, to assess the sensitivity of the ToFE of DZD relative to
future socioeconomic scenarios, we applied our detection framework
to hydro-climatic simulations from CMIP6 CNRM models under the
SSP2-4.5 scenario. We utilized the same ensemble members of the
CNRMmodel to ensure consistency: CM6-1 (r2i1p1f2, r3i1p1f2, r4i1p1f2,
r5i1p1f2, r6i1p1f2), ESM2-1 (r2i1p1f2, r3i1p1f2, r4i1p1f2, r5i1p1f2), and
CM6-1-HR (r1i1p1f2). The analysis incorporated available water con-
sumption projections from five Global Climate Models (GCMs) from
GFDL, HADGEM, IPSL, MIROC, and NORESM under SSP2-RCP4.5. The
approach followed the same methodological steps as applied to
CESM2-LE (Supplementary Fig. 1). Specifically, we computed the
SPEI48, SRFI48, and SWSI48, and applied the bias correction method,
QDM, using ERA5-based reference indices, and subsequently deter-
mined the ToFE. All datasets are interpolated to the CNRM atmo-
spheric resolution (1.4° × 1.4°) using the first-order conservative
remapping (remapcon) method from the CDO. The results (Supple-
mentary Fig. 20c) reveal substantial spread among ensemblemembers
under CNRM SSP2-4.5, highlighting pronounced uncertainty in DZD
emergence timing throughout the twenty-first century. Compared to
the higher-emission SSP3-7.0 (Supplementary Fig. 20b), the emer-
gence is delayed and more dispersed, with broader PDFs and later
peaks, suggesting that moderate forcings lead to slower distribution
and less certain emergence of water scarcity extremes. When com-
paring the special pattern of ToFE under CNRM SSP2-4.5 with CESM2-
LE SSP3-7.0 (Supplementary Fig. 21e), results show that high spatial
disagreement of 76% of land areas exhibit uncertain DZD emergence,
meaning that emergence is detected in only one of the models. Only
9%of regions show earlier emergence in CESM2-LE SSP3-7.0, while 14%
indicate later emergence relative to CNRM SSP2-4.5. By considering
the samemodel, CNRM, under different scenarios, SSP3-7.0 and SSP2-
4.5 (Supplementary Fig. 21f), the uncertainty still dominates but
decreases to 43% of the land area, and spatial discrepancies in DZD-
prone regions persist across scenarios. Notably, the near-equal split
between earlier and later emergence in different regions indicates that
scenario choice (SSP3-7.0 vs. SSP2-4.5) may affect ToFE more sym-
metrically but also underscores the spatial heterogeneity of hydro-
logical responses to combined climate and water use stress. The
results show that the influence of emission scenarios on DZD ToFE is
region-specific, due to the interactionbetween regional climatedrivers
and human water use. Under the high-emission scenario (SSP3-7.0),
DZD emergence can either advance or be delayed depending on the
region. Notably, spatial discrepancies in DZD-prone regions persist
across scenarios, with 43% of the land area remaining uncertain
between the SSP2-4.5 and SSP3-7.0 scenarios within the CNRMmodel.
However, both scenarios, SSP2-4.5 and SSP3-7.0, agree on DZD emer-
gence across 57% of the DZD-prone land area. Within this overlap,
SSP3-7.0 projects later emergence over 17% of the area and earlier
emergence over 18% compared to SSP2-4.5, while 22% of the area
shows no change in the ToFE between the two scenarios (Supple-
mentary Fig. 21f). These findings underscore the role of both scenario
andmodel structures in shaping DZD emergence. Notably, even under
high-forcing SSP3-7.0, CESM2-LE may still project later ToFE than
CNRM under moderate forcing (SSP2-4.5), pointing to differences
in model sensitivity to hydro-climatic stressors. This highlights the
importance of multi-model and multi-scenario assessments
when evaluating risks associated with extreme emergence and water
scarcity. Furthermore, a probabilistic approach such as the FAR
requires large ensembles to ensure robust estimates. The relatively
small ensemble size of CNRM limits the confidence in scenario-
attribution results, underscoring the need for ensemble expansion and
multi-model convergence to improve attribution robustness and
risk quantification. Given these model differences, CESM2-LE
provides output at a higher spatial resolution (1.25° × 0.9375°)
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compared to the lower-resolution CNRMmodel (1.40625° × 1.40625°).
CESM2-LE detects finer-scale features and localized extremes that
may be overlooked or underrepresented in the CNRM. Therefore,
we have not aggregated events across both CESM2-LE and CNRM,
since increasing the CNRM resolution to the resolution of CESM2-LE
could introduce spatial biases and distort the representation of
extreme events.

Data availability
All datasets are freely accessible to the public. The CESM2-LE data can
be accessed at: https://www.cesm.ucar.edu/community-projects/
lens2, retrieved in August 2022. The ECMWF Reanalysis v5 (ERA5-
Land) data can be found at https://cds.climate.copernicus.eu. The
GloFAS-ERA5 dataset was downloaded from https://ewds.climate.
copernicus.eu/datasets/cems-glofas-historical?tab=overview with the
DOI: 10.24381/cds.a4fdd6b9, updated in February 2025. The reservoir
data are available athttps://www.globaldamwatch.org/grand, accessed
in December 2023. The HYDE population data can be found at https://
public.yoda.uu.nl/geo/UU01/94FNH0.html, retrieved inMay2024. The
downscaling Global Spatial Population Projections from 1/8-degree to
1-km Grid Cells from NCAR is available at: https://www.cgd.ucar.edu/
sections/iam/modeling/spatial-population, consulted in August 2022.
The monthly sectoral water demand data used in this study are avail-
able via https://dataverse.harvard.edu/dataset.xhtml?persistentId=
doi:10.7910/DVN/VIQEAB, assessed in July 2024. The CNRM-CERFACS
data (SSP2.4-5 and SSP3.7-0) are availableonline from the Earth System
Grid Federation (ESGF) public data repository (https://aims2.llnl.gov/
search/?project=CMIP6/), assessed in July 2025.

Code availability
The data for this study were analyzed using R, and the figures were
generated using Python under Spyder with publicly available tool
packages. The available open-source packages comprise: spei.R
(https://rdrr.io/cran/SPEI/src/R/spei.R), MBC-QDM.R (https://rdrr.io/
cran/MBC/src/R/MBC-QDM.R), drc (https://rdrr.io/cran/drc/). The
scripts for the data analysis are available from the GitHub and Zenodo
repositories111 at https://github.com/phyvera/ToFE_DZD and https://
doi.org/10.5281/zenodo.16723000.

References
1. Wolski, P. How severe is Cape Town’s “Day Zero” drought? Sig-

nificance. 15, 24–27 (2018).
2. Holden, P. B. et al. Nature-based solutions in mountain catch-

ments reduce impact of anthropogenic climate change on
drought streamflow. Commun. Earth Environ. 3, 51 (2022).

3. Botai, C., Botai, J., De Wit, J., Ncongwane, K. & Adeola, A. Drought
characteristics over the Western Cape Province, South Africa.
Water 9, 876 (2017).

4. Booysen, M. J., Visser, M. & Burger, R. Temporal case study of
household behavioural response to Cape Town’s “Day Zero” using
smart meter data. Water Res. 149, 414–420 (2019).

5. Oluwatayo, I. B. & Braide, T. M. Socioeconomic determinants of
households’ vulnerability to drought in Western Cape, South
Africa. Sustainability 14, 7582 (2022).

6. State of Cape Town Report. Research Branch of the City’s
Policy and Strategy Department in the Future Planning and
Resilience Directorate. City of Cape Town. Collated by Aa-
ishah Petersen, with inputs from Jameyah Armien, Sivuyile
Rilityana, Ndileka Makohliso and Mojalefa Makitle. https://
resource.capetown.gov.za/documentcentre/Documents/City
%20research%20reports%20and%20review/State_Of_Cape_
Town_Report_2022.pdf (2022).

7. Kalia, B. Water crisis in cities: the case of ‘Day Zero’ in Chennai,
India. https://ic-sd.org/wp-content/uploads/2020/11/Bhrigu-
Kalia.pdf (2020).

8. Pincetl, S. et al. Adapting urbanwater systems tomanage scarcity
in the 21st century: the case of Los Angeles. Environ. Manage. 63,
293–308 (2019).

9. Liu, J., Liu, Q. & Yang, H. Assessing water scarcity by simulta-
neously considering environmental flow requirements, water
quantity, and water quality. Ecol. Indic. 60, 434–441 (2016).

10. Hao, Z., Singh, V. & Hao, F. Compound extremes in hydro-
climatology: a review. Water 10, 718 (2018).

11. Zscheischler, J. et al. Future climate risk from compound events.
Nat. Clim. Change 8, 469–477 (2018).

12. IPCC. Managing the Risks of Extreme Events and Disasters to
AdvanceClimateChangeAdaptation.ASpecial Report ofWorking
Groups I and II of the Intergovernmental Panel on Climate Change
(eds. Field, C. B. et al.) 582 (Cambridge University Press,
Cambridge, UK, and New York, NY, USA, 2012).

13. Zscheischler, J., Van Den Hurk, B., Ward, P. J. & Westra, S. Multi-
variate extremes and compound events. In Climate Extremes and
Their Implications for Impact and Risk Assessment (eds. Sillmann,
J., Sippel, S. & Russo, S.) 59–76 (Elsevier, 2020). https://doi.org/
10.1016/B978-0-12-814895-2.00004-5.

14. Cárdenas Belleza, G. A., Bierkens, M. F. P. & Van Vliet, M. T. H.
Sectoral water use responses to droughts and heatwaves: ana-
lyses from local to global scales for 1990–2019. Environ. Res. Lett.
18, 104008 (2023).

15. Allen, C. D., Breshears, D. D. & McDowell, N. G. On under-
estimation of global vulnerability to tree mortality and forest die‐
off from hotter drought in the Anthropocene. Ecosphere 6,
1–55 (2015).

16. Douville, H. et al. & Intergovernmental Panel on Climate Change
(IPCC).Water cycle changes. InClimateChange2021: ThePhysical
Science Basis. Contribution of Working Group I to the Sixth
Assessment Report of the Intergovernmental Panel on Climate
Change (Cambridge University Press, 2021).

17. Yoon, J.-H. et al. Increasingwater cycle extremes in California and
in relation to ENSO cycle under global warming.Nat. Commun. 6,
8657 (2015).

18. Dai, A., Zhao, T. & Chen, J. Climate change and drought: a pre-
cipitation andevaporation perspective.Curr. Clim.Change Rep.4,
301–312 (2018).

19. Vörösmarty, C. J., Green, P., Salisbury, J. & Lammers, R. B. Global
water resources: vulnerability from climate change and popula-
tion growth. Science 289, 284–288 (2000).

20. Dai, A. Drought under global warming: a review. WIREs Clim.
Change 2, 45–65 (2011).

21. Dai, A. Increasing drought under global warming in observations
and models. Nat. Clim. Change 3, 52–58 (2013).

22. Vicente‐Serrano, S. M. et al. Global characterization of hydro-
logical andmeteorological droughts under future climate change:
the importance of timescales, vegetation‐CO2 feedbacks and
changes to distribution functions. Int. J. Climatol. 40, 2557–2567
(2020).

23. Van Loon, A. F. et al. Drought in the Anthropocene.Nat. Geosci. 9,
89–91 (2016).

24. Van Vliet, M. T. H. et al. Global water scarcity including surface
water quality and expansions of clean water technologies.
Environ. Res. Lett. 16, 024020 (2021).

25. Veldkamp, T. I. E. et al. Changing mechanism of global water
scarcity events: Impacts of socioeconomic changes and inter-
annual hydro-climatic variability. Glob. Environ. Change 32,
18–29 (2015).

26. Veldkamp, T. I. E. et al. Water scarcity hotspots travel downstream
due to human interventions in the 20th and 21st century. Nat.
Commun. 8, 15697 (2017).

27. Mekonnen, M. M. & Hoekstra, A. Y. Four billion people facing
severe water scarcity. Sci. Adv. 2, e1500323 (2016).

Article https://doi.org/10.1038/s41467-025-63784-6

Nature Communications |         (2025) 16:8281 15

https://www.cesm.ucar.edu/community-projects/lens2
https://www.cesm.ucar.edu/community-projects/lens2
https://cds.climate.copernicus.eu/
https://ewds.climate.copernicus.eu/datasets/cems-glofas-historical?tab=overview
https://ewds.climate.copernicus.eu/datasets/cems-glofas-historical?tab=overview
https://www.globaldamwatch.org/grand
https://public.yoda.uu.nl/geo/UU01/94FNH0.html
https://public.yoda.uu.nl/geo/UU01/94FNH0.html
https://www.cgd.ucar.edu/sections/iam/modeling/spatial-population
https://www.cgd.ucar.edu/sections/iam/modeling/spatial-population
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/VIQEAB
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/VIQEAB
https://aims2.llnl.gov/search/?project=CMIP6/
https://aims2.llnl.gov/search/?project=CMIP6/
https://rdrr.io/cran/SPEI/src/R/spei.R
https://rdrr.io/cran/MBC/src/R/MBC-QDM.R
https://rdrr.io/cran/MBC/src/R/MBC-QDM.R
https://rdrr.io/cran/drc/
https://github.com/phyvera/ToFE_DZD
https://doi.org/10.5281/zenodo.16723000
https://doi.org/10.5281/zenodo.16723000
https://resource.capetown.gov.za/documentcentre/Documents/City%20research%20reports%20and%20review/State_Of_Cape_Town_Report_2022.pdf
https://resource.capetown.gov.za/documentcentre/Documents/City%20research%20reports%20and%20review/State_Of_Cape_Town_Report_2022.pdf
https://resource.capetown.gov.za/documentcentre/Documents/City%20research%20reports%20and%20review/State_Of_Cape_Town_Report_2022.pdf
https://resource.capetown.gov.za/documentcentre/Documents/City%20research%20reports%20and%20review/State_Of_Cape_Town_Report_2022.pdf
https://ic-sd.org/wp-content/uploads/2020/11/Bhrigu-Kalia.pdf
https://ic-sd.org/wp-content/uploads/2020/11/Bhrigu-Kalia.pdf
https://doi.org/10.1016/B978-0-12-814895-2.00004-5
https://doi.org/10.1016/B978-0-12-814895-2.00004-5
www.nature.com/naturecommunications


28. Wang, M. et al. A triple increase in global river basins with water
scarcity due to future pollution. Nat. Commun. 15, 880 (2024).

29. He, C. et al. Future global urban water scarcity and potential
solutions. Nat. Commun. 12, 4667 (2021).

30. Dube, K., Nhamo, G. & Chikodzi, D. Climate change-induced
droughts and tourism: impacts and responses of Western Cape
province, South Africa. J. Outdoor Recreat. Tour. 39, 100319
(2022).

31. Brühl, J. & Visser, M. The Cape Town drought: a study of the
combined effectiveness of measures implemented to prevent
“Day Zero. Water Resour. Econ. 34, 100177 (2021).

32. Burls, N. J. et al. The Cape Town “Day Zero” drought and Hadley
cell expansion. Npj Clim. Atmos. Sci. 2, 27 (2019).

33. Pascale, S., Kapnick, S. B., Delworth, T. L. &Cooke,W. F. Increasing
risk of another Cape Town “Day Zero” drought in the 21st century.
Proc. Natl. Acad. Sci. USA 117, 29495–29503 (2020).

34. Roffe, S. J., Steinkopf, J. & Fitchett, J. M. South African winter
rainfall zone shifts: a comparison of seasonality metrics for Cape
Town from 1841–1899 and 1933–2020. Theor. Appl. Climatol. 147,
1229–1247 (2022).

35. Odoulami, R. C., Wolski, P. & New, M. A SOM‐based analysis of the
drivers of the 2015–2017 Western Cape drought in South Africa.
Int. J. Climatol. 41, E1518–E1530 (2021).

36. Otto, F. E. L. et al. Anthropogenic influence on the drivers of the
Western Cape drought 2015–2017. Environ. Res. Lett. 13, 124010
(2018).

37. Odoulami, R. C., Wolski, P. & New, M. Attributing the driving
mechanisms of the 2015–2017 drought in the Western Cape
(South Africa) using self-organising maps. Environ. Res. Lett. 18,
074043 (2023).

38. Satoh, Y. et al. The timing of unprecedented hydrological drought
under climate change. Nat. Commun. 13, 3287 (2022).

39. Liu, J. et al. Timing the first emergence and disappearance of
global water scarcity. Nat. Commun. 15, 7129 (2024).

40. Akbas, A., Freer, J., Ozdemir, H., Bates, P. D. & Turp, M. T. What
about reservoirs? Questioning anthropogenic and climatic inter-
ferences on water availability. Hydrol. Process. 34,
5441–5455 (2020).

41. Di Baldassarre, G., Martinez, F., Kalantari, Z. & Viglione, A. Drought
andflood in theAnthropocene: feedbackmechanisms in reservoir
operation. Earth Syst. Dyn. 8, 225–233 (2017).

42. Di Baldassarre, G. et al. Water shortages worsened by reservoir
effects. Nat. Sustain. 1, 617–622 (2018).

43. Qi, Y. et al. Future changes in drought frequencydue to changes in
themean and shape of the PDSI probability density function under
RCP4.5 scenario. Front. Earth Sci. 10, 857885 (2022).

44. Best, J. Anthropogenic stresses on the world’s big rivers. Nat.
Geosci. 12, 7–21 (2019).

45. Prudhomme, C. et al. Hydrological droughts in the 21st century,
hotspots and uncertainties from a global multimodel ensemble
experiment. Proc. Natl. Acad. Sci. USA 111, 3262–3267 (2014).

46. Vieira,M. J. F. &Stadnyk, T. A. Leveragingglobal climatemodels to
assess multi-year hydrologic drought. Npj Clim. Atmos. Sci. 6,
179 (2023).

47. Lu, W. et al. Hydrological projections of future climate change
over the source region of Yellow River and Yangtze River in the
Tibetan Plateau: a comprehensive assessment by coupling
RegCM4 and VIC model. Hydrol. Process. 32, 2096–2117 (2018).

48. Kraaijenbrink, P. D. A., Stigter, E. E., Yao, T. & Immerzeel, W. W.
Climate change decisive for Asia’s snow meltwater supply. Nat.
Clim. Change 11, 591–597 (2021).

49. Gu, H. et al. Impact of climate change on hydrological extremes in
the Yangtze River Basin, China. Stoch. Environ. Res. Risk Assess.
29, 693–707 (2015).

50. Hirabayashi, Y. et al. Global flood risk under climate change. Nat.
Clim. Change 3, 816–821 (2013).

51. Giuntoli, I., Vidal, J.-P., Prudhomme, C. & Hannah, D. M. Future
hydrological extremes: the uncertainty from multiple global cli-
mate and global hydrological models. Earth Syst. Dyn. 6,
267–285 (2015).

52. Hanasaki, N. et al. A global water scarcity assessment under
Shared Socio-economic Pathways—part 2: water availability and
scarcity. Hydrol. Earth Syst. Sci. 17, 2393–2413 (2013).

53. Matthews, J.H.Climatepolicy is inundating theSDGs.Nat.Water 1,
216–218 (2023).

54. United Nations. Sustainable Development Gal 6 Synthesis Report
2018 onwater andSanitation. (NewYork, 2018), https://www.gwp.
org/contentassets/d57b65ff36804dbcb6a8ff98abe8214a/sdg-6-
synthesis-report-2018-on-water-and-sanitation.pdf.

55. Rockström, J., Mazzucato, M., Andersen, L. S., Fahrländer, S. F. &
Gerten, D. Why we need a new economics of water as a common
good. Nature 615, 794–797 (2023).

56. Pisor, A. C. et al. Effective climate change adaptation means
supporting community autonomy. Nat. Clim. Change 12,
213–215 (2022).

57. Basheer, M. et al. Cooperative adaptive management of the Nile
River with climate and socio-economic uncertainties. Nat. Clim.
Change 13, 48–57 (2023).

58. Jiménez, A. et al. Unpacking water governance: a framework for
practitioners. Water 12, 827 (2020).

59. Becher, O. et al. The challenge of closing the climate adaptation
gap for water supply utilities. Commun. Earth Environ. 5, 356
(2024).

60. Orth, R., Zscheischler, J. & Seneviratne, S. I. Record dry summer in
2015 challenges precipitation projections in Central Europe. Sci.
Rep. 6, 28334 (2016).

61. Denissen, J. M. C. et al. Widespread shift from ecosystem energy
to water limitation with climate change. Nat. Clim. Change 12,
677–684 (2022).

62. Kuang, X. et al. The changing nature of groundwater in the global
water cycle. Science 383, eadf0630 (2024).

63. Jasechko, S. & Perrone, D. Global groundwater wells at risk of
running dry. Science 372, 418–421 (2021).

64. Liu, P.-W. et al. Groundwater depletion in California’s Central
Valley accelerates during megadrought. Nat. Commun. 13,
7825 (2022).

65. Van Loon, A. F. & Van Lanen, H. A. J. A process-based typology of
hydrological drought. Hydrol. Earth Syst. Sci. 16, 1915–1946
(2012).

66. Raymond, C. et al. Understanding and managing connected
extreme events. Nat. Clim. Change 10, 611–621 (2020).

67. Stolte, T. R. et al. Global drought risk in cities: present and future
urban hotspots. Environ. Res. Commun. 5, 115008 (2023).

68. Torelló-Sentelles, H. & Franzke, C. L. E. Drought impact links to
meteorological drought indicators and predictability in Spain.
Hydrol. Earth Syst. Sci. 26, 1821–1844 (2022).

69. Calverley, C.M. &Walther, S. C. Drought, watermanagement, and
social equity: analyzing Cape Town, South Africa’s water crisis.
Front. Water 4, 910149 (2022).

70. Miyan, M. A. Droughts in Asian least developed countries: vul-
nerability and sustainability. Weather Clim. Extrem. 7, 8–23
(2015).

71. Rosa, L., Chiarelli, D. D., Rulli, M. C., Dell’Angelo, J. & D’Odorico, P.
Global agricultural economic water scarcity. Sci. Adv. 6,
eaaz6031 (2020).

72. Rodgers, K. B. et al. Ubiquityof human-inducedchanges in climate
variability. https://esd.copernicus.org/preprints/esd-2021-50/
esd-2021-50.pdf, https://doi.org/10.5194/esd-2021-50 (2021).

Article https://doi.org/10.1038/s41467-025-63784-6

Nature Communications |         (2025) 16:8281 16

https://www.gwp.org/contentassets/d57b65ff36804dbcb6a8ff98abe8214a/sdg-6-synthesis-report-2018-on-water-and-sanitation.pdf
https://www.gwp.org/contentassets/d57b65ff36804dbcb6a8ff98abe8214a/sdg-6-synthesis-report-2018-on-water-and-sanitation.pdf
https://www.gwp.org/contentassets/d57b65ff36804dbcb6a8ff98abe8214a/sdg-6-synthesis-report-2018-on-water-and-sanitation.pdf
https://esd.copernicus.org/preprints/esd-2021-50/esd-2021-50.pdf
https://esd.copernicus.org/preprints/esd-2021-50/esd-2021-50.pdf
https://doi.org/10.5194/esd-2021-50
www.nature.com/naturecommunications


73. Lehner, B. et al. High‐resolutionmapping of the world’s reservoirs
and dams for sustainable river‐flow management. Front. Ecol.
Environ. 9, 494–502 (2011).

74. Li, Y., Zhao, G., Allen, G. H. & Gao, H. Diminishing storage returns
of reservoir construction. Nat. Commun. 14, 3203 (2023).

75. Grill, G. et al. An index-based framework for assessing patterns
and trends in river fragmentation and flow regulation by global
dams at multiple scales. Environ. Res. Lett. 10, 015001 (2015).

76. Khan, Z. et al. Global monthly sectoral water use for 2010–2100 at
0.5° resolution across alternative futures. Sci. Data 10, 201 (2023).

77. Ritz, C., Baty, F., Streibig, J. C. & Gerhard, D. Dose-response ana-
lysis using R. PLoS ONE 10, e0146021 (2015).

78. Schulzweida, U. CDO user guide. https://doi.org/10.5281/
ZENODO.10020800 (2023).

79. Klein Goldewijk, K., Beusen, A., Doelman, J. & Stehfest, E.
Anthropogenic land use estimates for the Holocene—HYDE 3.2.
Earth Syst. Sci. Data 9, 927–953 (2017).

80. Gao, J. Downscaling global spatial population projections from 1/
8-degree to 1-km grid cells. https://opensky.ucar.edu/islandora/
object/technotes:553 (2017).

81. Bae, S., Lee, S.-H., Yoo, S.-H. & Kim, T. Analysis of drought
characteristics using time series of modified SPEI in South Korea
from 1981 to 2010. http://www.preprints.org/manuscript/
201610.0013/v1 (2016).

82. Kim, B. S., Chang, I. G., Sung, J. H. & Han, H. J. Projection in future
drought hazard of South Korea based on RCP climate change
scenario 8.5 using SPEI. Adv. Meteorol. 2016, 1–23 (2016).

83. Li, W. et al. Future changes in the frequency of extreme droughts
over China based on two large ensemble simulations. J. Clim.
6023–6035. https://doi.org/10.1175/JCLI-D-20-0656.1 (2021).

84. Li, X. et al. Concurrent droughts and hot extremes in northwest
China from 1961 to 2017. Int. J. Climatol. 39, 2186–2196 (2019).

85. Mallya, G., Mishra, V., Niyogi, D., Tripathi, S. & Govindaraju, R. S.
Trends and variability of droughts over the Indian monsoon
region. Weather Clim. Extrem. 12, 43–68 (2016).

86. Naumann, G., Spinoni, J., Vogt, J. V. & Barbosa, P. Assessment of
drought damages and their uncertainties in Europe. Environ. Res.
Lett. 10, 124013 (2015).

87. Zhao, M., A, G., Liu, Y. & Konings, A. G. Evapotranspiration fre-
quently increases during droughts. Nat. Clim. Change 12,
1024–1030 (2022).

88. Vicente-Serrano, S. M., Beguería, S. & López-Moreno, J. I. A mul-
tiscalar drought index sensitive to global warming: the standar-
dized precipitation evapotranspiration index. J. Clim. 23,
1696–1718 (2010).

89. Droogers, P. & Allen, R. G. Estimating reference evapotranspira-
tion under inaccurate data conditions. Irrig. Drain. Syst. 16,
33–45 (2002).

90. Vicente-Serrano, S. M. et al. Performance of drought indices for
ecological, agricultural, and hydrological applications. Earth
Interact 16, 1–27 (2012).

91. Lorenzo-Lacruz, J. et al. The impact of droughts and water man-
agement on various hydrological systems in the headwaters of the
Tagus River (central Spain). J. Hydrol. 386, 13–26 (2010).

92. Li, Z. et al. Clarifying the propagation dynamics from meteor-
ological to hydrological drought induced by climate change and
direct human activities. J. Hydrometeorol. https://doi.org/10.1175/
JHM-D-21-0033.1 (2021).

93. Van Loon, A. F. Hydrological drought explained.WIREs Water 2,
359–392 (2015).

94. Vereecken, H. et al. Soil hydrology in the Earth system. Nat. Rev.
Earth Environ. 3, 573–587 (2022).

95. Shukla, S. & Wood, A. W. Use of a standardized runoff index for
characterizing hydrologic drought. Geophys. Res. Lett. 35,
2007GL032487 (2008).

96. Vicente-Serrano, S. M. et al. Accurate computation of a stream-
flow drought index. J. Hydrol. Eng. 17, 318–332 (2012).

97. Beguería, S. & Vicente-Serrano, S. M. SPEI: Calculation of the
Standardized Precipitation-Evapotranspiration Index. 1.8.1 https://
doi.org/10.32614/CRAN.package.SPEI (2011).

98. Huang, L. & Yin, L. Supply anddemand analysis ofwater resources
based on system dynamics model. J. Eng. Technol. Sci. 49,
705–720 (2017).

99. Ansari, R., Casanueva, A., Liaqat, M. U. & Grossi, G. Evaluation of
bias correction methods for a multivariate drought index: case
study of the Upper Jhelum Basin. Geosci. Model Dev. 16,
2055–2076 (2023).

100. Van De Velde, J., Demuzere, M., De Baets, B. & Verhoest, N. E. C.
Impact of bias nonstationarity on the performance of uni- and
multivariate bias-adjusting methods: a case study on data from
Uccle, Belgium. Hydrol. Earth Syst. Sci. 26, 2319–2344 (2022).

101. Cannon, A. J., Sobie, S. R. &Murdock, T. Q. Bias correction of GCM
precipitation by quantilemapping: howwell domethodspreserve
changes in quantiles and extremes? J. Clim. 28, 6938–6959
(2015).

102. Li, H., Sheffield, J. & Wood, E. F. Bias correction of monthly pre-
cipitation and temperature fields from Intergovernmental Panel
on Climate Change AR4 models using equidistant quantile
matching. J. Geophys. Res. Atmos. 115, 2009JD012882 (2010).

103. Wang, L. & Chen, W. Equiratio cumulative distribution function
matching as an improvement to the equidistant approach in bias
correction of precipitation. Atmos. Sci. Lett. 15, 1–6 (2014).

104. Intergovernmental Panel onClimateChange (IPCC).Managing the
Risks of Extreme Events and Disasters to Advance Climate Change
Adaption: Special Report of the Intergovernmental Panel on Cli-
mate Change (Cambridge University Press, 2012).

105. Perkins-Kirkpatrick, S. E. et al. On the attribution of the impacts of
extreme weather events to anthropogenic climate change.
Environ. Res. Lett. 17, 024009 (2022).

106. Black, M. T., Karoly, D. J. & King, A. D. The contribution of anthro-
pogenic forcing to the Adelaide and Melbourne, Australia, Heat
Waves of January 2014. Bull. Am. Meteorol. Soc. 96, S145–S148
(2015).

107. Kirchmeier‐Young, M. C., Gillett, N. P., Zwiers, F. W., Cannon, A. J.
& Anslow, F. S. Attribution of the influence of human‐induced
climate change on an extreme fire season. Earths Future 7,
2–10 (2019).

108. Zhong, S., Ying, J. & Collins, M. Sources of uncertainty in the time
of emergence of tropical Pacific climate change signal: role of
internal variability. J. Clim. 36, 2535–2549 (2023).

109. Mora, C. et al. The projected timing of climate departure from
recent variability. Nature 502, 183–187 (2013).

110. Batibeniz, F., Hauser, M. & Seneviratne, S. I. Countries most
exposed to individual and concurrent extremes and near-
permanent extreme conditions at different global warming levels.
Earth Syst. Dyn. 14, 485–505 (2023).

111. Ravinandrasana, V. P. & Franzke, C. L. E. The first emergence of
unprecedented global water scarcity in the anthropocene, phy-
vera/ToFE_DZD: ToFE_DZD. https://doi.org/10.5281/zenodo.
16723000 (2025).

Acknowledgements
We thank Dr. A. Timmermann for fruitful discussions and for suggesting
using reservoirs in the DZD assessment, which helped to improve the
manuscript. The simulations were conducted on the IBS/ICCP super-
computer “Aleph,” a 1.43 petaflops high-performance Cray XC50-LC
Skylake computing system with 18,720 processor cores, 9.59 PB sto-
rage, and43PB tape archive space.Wealso acknowledge the support of
KREONET. The study was supported by the Institute for Basic Science
(IBS), Republic of Korea, under IBS-R028-D1. C.F. is also supportedby the

Article https://doi.org/10.1038/s41467-025-63784-6

Nature Communications |         (2025) 16:8281 17

https://doi.org/10.5281/ZENODO.10020800
https://doi.org/10.5281/ZENODO.10020800
https://opensky.ucar.edu/islandora/object/technotes:553
https://opensky.ucar.edu/islandora/object/technotes:553
http://www.preprints.org/manuscript/201610.0013/v1
http://www.preprints.org/manuscript/201610.0013/v1
https://doi.org/10.1175/JCLI-D-20-0656.1
https://doi.org/10.1175/JHM-D-21-0033.1
https://doi.org/10.1175/JHM-D-21-0033.1
https://doi.org/10.32614/CRAN.package.SPEI
https://doi.org/10.32614/CRAN.package.SPEI
https://doi.org/10.5281/zenodo.16723000
https://doi.org/10.5281/zenodo.16723000
www.nature.com/naturecommunications


National Research Fund of Korea (NRF-2022M3K3A1097082 and RS
−2024-00416848).

Author contributions
V.P.R. and C.L.E.F. jointly designed the study and contributed to the
writing of the paper as well as the interpretation of the results. V.P.R.
collected data, performed the calculations and statistical analyses,
prepared the figures, and drafted the article.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-025-63784-6.

Correspondence and requests for materials should be addressed to
Christian L. E. Franzke.

Peer review informationNature Communications thanks Rene Orth and
the other anonymous reviewer(s) for their contribution to the peer
review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if you modified the licensed
material. Youdonot havepermissionunder this licence toshare adapted
material derived from this article or parts of it. The images or other third
party material in this article are included in the article’s Creative
Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons
licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2025

Article https://doi.org/10.1038/s41467-025-63784-6

Nature Communications |         (2025) 16:8281 18

https://doi.org/10.1038/s41467-025-63784-6
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/naturecommunications

	The first emergence of unprecedented global water scarcity in the Anthropocene
	Results
	Emergence of multi-year drought due to anthropogenic global warming
	Time of First Emergence (ToFE) of DZD
	Waiting time and duration of DZD
	Impact of DZD on the population
	DZD in terms of global warming levels
	Adaptation pathways and policy implications
	Uncertainty in ToFE of DZD

	Discussion
	Methods
	Climate models simulations and observations
	Water stress indices
	Bias correction (BC)
	Time for Reservoirs to Dry (TRD)
	Compound multi-year hydrological drought
	Day zero drought definition
	Detection of the time of first emergence
	DZD characteristics: waiting time and duration
	Global warming level (GWL)
	Sensitivity analysis

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




